Comparison of Parametric Survival Extrapolation Approaches Incorporating General Population Mortality for Adequate Health Technology Assessment of New Oncology Drugs [Editor's Choice]



Survival extrapolation of trial outcomes is required for health economic evaluation. Generally, all-cause mortality (ACM) is modeled using standard parametric distributions, often without distinguishing disease-specific/excess mortality and general population background mortality (GPM). Recent National Institute for Health and Care Excellence guidance (Technical Support Document 21) recommends adding GPM hazards to disease-specific/excess mortality hazards in the log-likelihood function (“internal additive hazards”). This article compares alternative extrapolation approaches with and without GPM adjustment.


Survival extrapolations using the internal additive hazards approach (1) are compared to no GPM adjustment (2), applying GPM hazards once ACM hazards drop below GPM hazards (3), adding GPM hazards to ACM hazards (4), and proportional hazards for ACM versus GPM hazards (5). The fit, face validity, mean predicted life-years, and corresponding uncertainty measures are assessed for the active versus control arms of immature and mature (30- and 75-month follow-up) multiple myeloma data and mature (64-month follow-up) breast cancer data.


The 5 approaches yielded considerably different outcomes. Incremental mean predicted life-years vary most in the immature multiple myeloma data set. The lognormal distribution (best statistical fit for approaches 1-4) produces survival increments of 3.5 (95% credible interval: 1.4-5.3), 8.5 (3.1-13.0), 3.5 (1.3-5.4), 2.9 (1.1-4.5), and 1.6 (0.4-2.8) years for approaches 1 to 5, respectively. Approach 1 had the highest face validity for all data sets. Uncertainty over parametric distributions was comparable for GPM-adjusted approaches 1, 3, and 4, and much larger for approach 2.


This study highlights the importance of GPM adjustment, and particularly of incorporating GPM hazards in the log-likelihood function of standard parametric distributions.


Ilse van Oostrum Mario Ouwens Antonio Remiro-Azócar Gianluca Baio Maarten J. Postma Erik Buskens Bart Heeg

Your browser is out-of-date

ISPOR recommends that you update your browser for more security, speed and the best experience on Update my browser now