Network Meta-Analysis- Development of a Three-Level Hierarchical Modeling Approach Incorporating Dose-Related Constraints

Abstract

Background

Network meta-analysis (NMA) is commonly used in evidence synthesis; however, in situations in which there are a large number of treatment options, which may be subdivided into classes, and relatively few trials, NMAs produce considerable uncertainty in the estimated treatment effects, and consequently, identification of the most beneficial intervention remains inconclusive.

Objective

To develop and demonstrate the use of evidence synthesis methods to evaluate extensive treatment networks with a limited number of trials, making use of classes.

Methods

Using Bayesian Markov chain Monte Carlo methods, we build on the existing work of a random effects NMA to develop a three-level hierarchical NMA model that accounts for the exchangeability between treatments within the same class as well as for the residual between-study heterogeneity. We demonstrate the application of these methods to a continuous and binary outcome, using a motivating example of overactive bladder. We illustrate methods for incorporating ordering constraints in increasing doses, model selection, and assessing inconsistency between the direct and indirect evidence.

Results

The methods were applied to a data set obtained from a systematic literature review of trials for overactive bladder, evaluating the mean reduction in incontinence episodes from baseline and the number of patients reporting one or more adverse events. The data set involved 72 trials comparing 34 interventions that were categorized into nine classes of interventions, including placebo.

Conclusions

Bayesian three-level hierarchical NMAs have the potential to increase the precision in the effect estimates while maintaining the interpretability of the individual interventions for decision making.

Authors

Rhiannon K. Owen Douglas G. Tincello R. Abrams Keith

Your browser is out-of-date

ISPOR recommends that you update your browser for more security, speed and the best experience on ispor.org. Update my browser now

×