Medication Adherence:
Focus on Secondary Database Analysis

Jamie C. Barner, PhD
The University of Texas
College of Pharmacy

ISPOR Student Forum Presentation
February 24, 2010
Objective

- Highlight important issues in measuring and assessing adherence when using secondary databases.
Outline

- Definitions
- Assumptions
- Medication Possession Ratio (MPR)
- Proportion of Days Covered (PDC)
- Persistence
Definitions

- **Medication Compliance (Synonym: Adherence)**
 - “…extent to which a patient acts in accordance with the prescribed interval and dose of and dosing regime…”

- **Medication Persistence**
 - “…is the accumulation of time from initiation to discontinuation of therapy…”

Source: Value in Health 2003;6: 566-73
Assumptions

- Secondary databases provide limited information regarding adherence
 - Data assessed is only as accurate as the data that was input
 - Assume that the patient was in “possession” of the medication—no guarantees that medications were taken
 - Patterns of no drug therapy may not indicate non-adherence
 - Doctor may have discontinued or verbally informed patient to change daily regimen (e.g., BID to QD or cut pills in half)
 - Patient may have been given samples
- Although there are a number of “unknowns,” secondary databases provide an acceptable estimate of adherence with large patient populations
Medication Possession Ratio

MPR

- Number of days of medication supplied within the refill interval / number of days in refill interval
- To calculate ratio, need at least 2 fill dates (e.g., index date and at least 1 refill)

\[
\frac{\text{total Rx days of supply}}{\text{last Rx date} - \text{first Rx date} + \text{last Rx days of supply}}
\]

OR

\[
\frac{\text{total Rx days of supply} - \text{last days supply}}{\text{last Rx date} - \text{first Rx date}}
\]
MPR

- **Numerator**
 - **Days supply**
 - Distribution of data
 - Data coding errors
 - Examine quantity vs. days supply
 - QD medications: quantity = days supply
 - Outliers

\[
\text{total Rx days of supply} = \frac{\text{last Rx date} - \text{first Rx date} + \text{last Rx days of supply}}{}
\]
MPR

- **Denominator**
- **Refill interval**
 - last refill as the end point
 - E.g., depression
- **Fixed interval**
 - Special cases (e.g. seasonal use)
 - ADHD, Allergies, Asthma

\[
\text{total Rx days of supply} = \frac{\text{last Rx date} - \text{first Rx date} + \text{last Rx days of supply}}{\text{Fixed interval (365 days)}}
\]
Continuous
- Increases power
- Relevance of MPR increasing from 10% to 30%?

Dichotomous
- Cut-off value is typically arbitrary
 - 80% conventional
 - Disease specific (e.g., HIV/AIDS)

MPR >1.0 (100%)
- Truncation
 - What % of data is >1.0 >1.2?
- Overadherence
 - Common with VA databases

SENSITIVITY ANALYSES are a must!!
For several chronic disease states, it is important that patients take more than one medication concomitantly.

- E.g., diabetes, hypertension, HIV/AIDS

Dual therapy MPR

\[
\text{Dual therapy MPR} = \frac{\text{total Rx days of supply}/2}{\text{last Rx date} - \text{first Rx date} + \text{last Rx days of supply}}
\]

Triple therapy MPR

\[
\text{Triple therapy MPR} = \frac{\text{total Rx days of supply}/3}{\text{last Rx date} - \text{first Rx date} + \text{last Rx days of supply}}
\]

Fixed-dose combination therapies
Proportion of Days Covered

PDC

\[
\text{PDC} = \frac{\text{total days all drug(s) available}}{\text{days in follow-up period}}
\]

- Provides more conservative estimate of medication adherence (compared to MPR) when multiple medications are intended to be used concomitantly.
- PDC avoids double-counting days of medication coverage because a day is only counted if all medications are available on that day.
- PDC values range from 0 to 1.
PDC vs. MPR

Patient with HIV/AIDS on a 5-drug regimen. Is this patient adherent?

<table>
<thead>
<tr>
<th>Drug</th>
<th>Supply</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>360</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>360</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>180</td>
<td>50</td>
</tr>
<tr>
<td>E</td>
<td>270</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>1260</td>
<td>70</td>
</tr>
</tbody>
</table>

MPR \(\frac{1260}{5} = 252 \)

MPR \(\frac{360}{360} = 1 \)

PDC \(\frac{0}{360} = 0 \)
PDC vs. MPR

<table>
<thead>
<tr>
<th>Drug</th>
<th>Supply</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1440</td>
<td></td>
</tr>
</tbody>
</table>

MPR
- 1440/5
- 360

PDC
- 180
- 360
PDC vs. MPR

Table

<table>
<thead>
<tr>
<th>Drug</th>
<th>Supply</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1290</td>
<td></td>
</tr>
</tbody>
</table>

MPR

<table>
<thead>
<tr>
<th>1290/5</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td></td>
</tr>
</tbody>
</table>

PDC

<table>
<thead>
<tr>
<th>150</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td></td>
</tr>
</tbody>
</table>
 Persistence

- Number of days until discontinuation
- Percentage of individuals remaining on therapy (persistent) until a specified time interval

All patients below have 50% adherence, but... Which patient is persistent????
Persistence

- What can persistence patterns reveal about medication taking behaviors?
 - A and E could represent seasonality
 - B could represent problem resolution
 - C could represent a financial issue or patient taking half of the dose
 - D could represent episodic need or toleration of side effects
Persistence

- Time from the initial prescription fill until the patient has a *gap* in therapy
 - Continuous measure

- Proportion of patients persistent for a specified number of days without a *gap* in therapy

- Gap periods
 - Usually days (e.g., 30, 60, 90, 1.5x last days supply)
 - Depends on
 - clinical relevance
 - prescription plan day supply limits (e.g., mail order, community pharmacy, Medicaid)

- SENSITIVITY ANALYSES are a must!!
Which Patient is Persistent?

Patients persisted, on average, 126 days w/o a 60-day gap.

Patients persisted, on average, 96 days w/o a 30-day gap.

<table>
<thead>
<tr>
<th>Patient</th>
<th>MPR</th>
<th>Months--30 days/month</th>
<th>Days persistent w/(X-day) gap</th>
<th>Persist (X days) w/o 30-day gap (y/n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50%</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>90 90</td>
<td>y n</td>
</tr>
<tr>
<td>B</td>
<td>50%</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>180 180</td>
<td>y y</td>
</tr>
<tr>
<td>C</td>
<td>50%</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>??? 30 180</td>
<td>n n</td>
</tr>
<tr>
<td>D</td>
<td>50%</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>60 60</td>
<td>n n</td>
</tr>
<tr>
<td>E</td>
<td>50%</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td>120 120</td>
<td>y n</td>
</tr>
</tbody>
</table>

3/5 (60%) patients were persistent for 90 days w/o a 30-day gap.

1/5 (20%) patients were persistent for 180 days w/o a 30-day gap.
Summary

- Adherence is a complex concept
- Important to understand
 - Characteristics of data and patients
 - Disease state and clinical relevance
 - Importance of various measures to payors
- Must be transparent with methods and provide valid reasons based on above information
- Sensitivity analyses are imperative!
Questions

- Thank you for the opportunity to share!
References

