Cost-Effectiveness Evaluation for a New Diagnostic Test Considering also Costs for False Negative and False Positive Diagnoses at Various Prevalence Rates

Elvira Mueller, Bjorn Schwander, Rito Bergemann
Analytica International GmbH, Untere Herrenstr. 25, 79539 Loerrach, Germany

ISPOR 2004, Hamburg
Poster ID: PGI14

OBJECTIVES
To evaluate the cost-effectiveness of a new diagnostic device for which no gold standard data are available. An example is given for the evaluation of capsule endoscopy (CE) in diagnosing obscure gastrointestinal bleeding (OGIB) from a health care payer perspective in Switzerland.

METHODS

Clinical Data:
- 7 controlled clinical trials
- n = 184 patients with OGIB
- Comparator: push enteroscopy (PE)
- Effectiveness parameters: sensitivity and specificity values, correctly diagnosed patients

Sensitivity:
- Per patient, location in small intestine only
- All CE positives are true positives
- CE positive finding, PE no finding → CE true positive, PE false negative
- CE no finding, PE positive finding → CE false negative
- Both positive findings → true positive findings for both tests

Specificity:
- PE literature data
- CE study data

Cost Data:
- Procedure cost of CE and PE
- Cost of diagnostic failure:
 - due to false positive diagnosis (FP)
 - due to false negative diagnosis (FN)
- For FP cost an assumption of unnecessary treatment was made
- For FN cost diagnostic procedures performed two years prior to study start were considered and allocated according prevalence in the model

Modeling:
- Micro-simulation model incorporating first- and second-order Monte Carlo simulation
- Simulation of 10,000 patients
- Pretest probability (prevalence) from 10 to 90%
- Breakdown of FN cost into 9 cycles
- Min, max, mean FN cost per cycle, depending on prevalence
- Incremental cost-effectiveness (ICE): costs per correctly diagnosed patient depending on prevalence

RESULTS
- Mean future costs after a false negative diagnosis can range from 7,644 € (Minimum 2,555; Maximum 22,993) at a disease prevalence of 10% (cycle 1) to 3,129 € (Minimum 2,555; Maximum 3,613) at a disease prevalence of 50% (cycle 9) in the patient population (Table 1).
- Sensitivity and specificity value calculations have meanwhile been confirmed by several, independent study results, comparing CE to intraoperative endoscopy, which is close to be regarded as gold standard.

Table 1: FN Costs – Prevalence Dependent

<table>
<thead>
<tr>
<th>Pretest Probability</th>
<th>Costs (EUR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td>10%</td>
<td>2,555</td>
</tr>
<tr>
<td>20%</td>
<td>2,555</td>
</tr>
<tr>
<td>30%</td>
<td>2,555</td>
</tr>
<tr>
<td>40%</td>
<td>2,555</td>
</tr>
<tr>
<td>50%</td>
<td>2,555</td>
</tr>
<tr>
<td>60%</td>
<td>2,555</td>
</tr>
<tr>
<td>70%</td>
<td>2,555</td>
</tr>
<tr>
<td>80%</td>
<td>2,555</td>
</tr>
<tr>
<td>90%</td>
<td>2,555</td>
</tr>
</tbody>
</table>

* Mean expected value, log-normal distribution

CONCLUSIONS
- Prevalence dependent ICE reveals cost saving potential of CE when used at a prevalence of 10% or higher. This corresponds with application of CE after negative upper and lower gastroscopy (Figure 1).
- Greatest savings are observed for a prevalence rate of 50%. At higher prevalences – i.e. at a later stage in the diagnostic path – cost savings decrease due to increase of false positive diagnoses.

REFERENCES