The Potential Public Health Impact of Varicella Vaccination in Hungary

Background

- Varicella (chickenpox):
 - Caused by the varicella zoster virus (VZV).
 - Highest incidence observed in <1 years of age in Europe (8/100,000 cases).
- Clinical symptoms include fever, generalized itchy rash, headache, malaise.
- Complications can occur among the previously healthy as well as in those who are immunosuppressed or considered to be at high risk and include scarring, bacterial infection, encephalitis, and pneumonia.
- Creates substantial burden:
 - On health care systems (hospitalizations; emergency department visits)
 - On society (school absenteeism; work time loss).

Objective:

- Estimate the current burden of varicella in Hungary.
- Project the potential public health impact of universal childhood varicella vaccination (UCVV).

Methods

- Adaptation of deterministic, compartment-based, age-structured dynamic transmission models.\(^{12,13}\)
- The model uses a Maternal/passive immunity – Susceptible – Exposed – Infectious (ESI) structure to model the natural history of VZV.
- Consists of a system of 126 ordinary differential equations, which are numerically integrated and used to determine model results.
- Model parameters related to natural history of the disease are taken from the literature.\(^ {14,15}\)
- The results indicate that the public health benefits extend beyond vaccinates, with a 98.6% reduction in disease in infants too young to be vaccinated.

Figure 1: Variella dynamic transmission model structure

\[\text{High immunity} \rightarrow \text{Susceptible} \rightarrow \text{Exposed} \rightarrow \text{Infectious} \rightarrow \text{Natural varicella} \rightarrow \text{Breakthrough varicella} \rightarrow \text{A2 after varicella vaccination}\]

Figure 2: Model calibration

- Prevalence of varicella immunity is obtained from a single seropositivity study in adults and children, respectively.

Figure 3: Impact of vaccination on wild-type and breakthrough varicella incidence and the age distribution of cases

\[\text{Incidence per 100,000 Population}\]

Table 1. Cumulative impact of one-dose varicella vaccination in Hungary over 25 years

<table>
<thead>
<tr>
<th>Years after start of vaccination program</th>
<th>1 year</th>
<th>5 years</th>
<th>10 years</th>
<th>15 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases of natural varicella</td>
<td>30,470</td>
<td>141,005</td>
<td>190,326</td>
<td>149,490</td>
</tr>
<tr>
<td>Number of cases of breakthrough varicella</td>
<td>271</td>
<td>199</td>
<td>191</td>
<td>664</td>
</tr>
<tr>
<td>Number of all varicella cases prevented</td>
<td>31,504</td>
<td>153,192</td>
<td>200,742</td>
<td>156,134</td>
</tr>
<tr>
<td>Number of varicella deaths prevented</td>
<td>0.5</td>
<td>0.77</td>
<td>0.95</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Results

- A rapid reduction of the burden of varicella will occur with both cases and deaths reduced by 99% within 10 years.
- Public health benefits extend beyond vaccinates, with a 98.6% reduction in disease in infants too young to be vaccinated.
- The impact of any on herpes zoster is not captured in the results.

Conclusions

- The results from this model predict a rapid and sustained decrease of varicella in Hungary, achieving near-elimination status within ten years.
- Notably, rapid disease reduction is seen even in age groups not vaccinated.
- The results indicate that the herd immunity threshold in Hungary is probably towards the lower end of previous results estimated in Europe\(^ {16}\) to range between 69.8% (Italy) and 91.9% (Netherlands), likely due to a combination of factors including a low birth rate.
- Further work to explore the cost-effectiveness of a national varicella vaccination program is warranted, given the demonstration shown of public health impact.

References

Poster # PIN93

Mesner Z; László P; Kalmar J; Benedek A; Pillsbury M; Kyle J; Wolfsen L.J.
St. László Hospital for Infectious Diseases, National Institute of Child Health, Budapest, Hungary; University of Pécs Department of Family Medicine, Pécs, Hungary; MSD Pharma Hungary Ltd., Budapest, Hungary; Center for Observational and Real-World Evidence (CORE), Merck & Co., Inc., Kenilworth, NJ, USA.

Contact Information
Email: lara.wolfson@merck.com

Copyright © 2016 Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc. Kenilworth, NJ, USA. All rights reserved.

Financial disclosures:
- Financial arrangement of the authors with companies whose products may be related to the present report are listed below, as disclosed by the authors. AI Feilberg and L.Wolfson are employees of Merck & Sharp & Dohme Corp., Merck & Co., Inc., Kenilworth, NJ, USA. J.Kalmar and A.Benedek are employees of MSD Pharma Hungary Ltd., Budapest, Hungary. J Kyle is an employee of MSD, Alex Data Systems, Westfield, NJ, which was hired by Merck & Co., Inc., Kenilworth, NJ, USA.

References