Introduction
Prostate cancer and its treatment can have a significant impact on health-related quality of life (HRQoL) and emotional well-being in metastatic castration-resistant prostate cancer (mCRPC). Skaltsa et al. developed a procedure of mapping scores that help better compare patients across different data sets. The objective of this study was to determine whether the previously developed algorithm maps the prostate cancer–specific questionnaire FACT-P, thus it can be used as a basis for the development of a generic mapping algorithm (GMA). The study assessed the performance of the previously developed algorithm and the group-specific model (GSM) in predicting utility scores from mCRPC patients.

Methods
We have applied the best model of each technique reported in Skaltsa et al. 2014. All 3 models yield accurate predictions comparable to those obtained from the estimation sample (0.01-area under the curve (AUC), 0.65-0.80, where AUC values represent the probability of correct classification). The validation sample came from PREVAIL, a phase 3 trial of enzalutamide (XTANDI®). We have applied the best model of each technique reported in Skaltsa et al. 2014. All 3 models yield accurate predictions comparable to those obtained from the estimation sample (0.01-AUC, 0.65-0.80, where AUC values represent the probability of correct classification). The validation sample came from PREVAIL, a phase 3 trial of enzalutamide (XTANDI®).

Objective
Evaluate the predictive performance of a published mapping algorithm for predicting utility values from the estimation and validation samples.

Results
The previously developed algorithm maps the prostate cancer–specific questionnaire FACT-P, thus it can be used as a basis for the development of a generic mapping algorithm (GMA). The study assessed the performance of the previously developed algorithm and the group-specific model (GSM) in predicting utility scores from mCRPC patients. The performance was assessed by the mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE).

Discussion
This study demonstrates that the previously developed algorithm can be used for predicting utility scores from mCRPC patients. The performance of the algorithm is comparable to that of the group-specific model (GSM), which is expected. The findings suggest that the previously developed algorithm can be used for predicting utility scores from mCRPC patients. The study provides evidence for the generalizability of the previously developed algorithm to mCRPC patients. The findings suggest that the previously developed algorithm can be used for predicting utility scores from mCRPC patients.

Acknowledgements
This study was funded by Astellas Pharma Inc. and Medacorp, Inc. N.B. Illustrated materials are funded by Astellas Pharma Inc. and Medacorp, Inc. and the author of this poster.

Figure 1. Example of reporting information on each dataset.

Table 1. Summary of baseline data in estimation and validation datasets.

Table 2. Summary of baseline data in estimation and validation datasets.

Table 3. Summary of FACT-P scores in estimation and validation datasets.

Table 4. Performance of predicted compared with observed utility values GEE and TPM.

Table 5. Percentages of predicted values within 0.05 and 0.1 from observed utility values by model.

Table 6. Accuracy of predicted and observed utilities GEE and TPM.