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A B S T R A C T

Purpose: Defining a study population and creating an analytic dataset
from longitudinal healthcare databases involves many decisions. Our
objective was to catalogue scientific decisions underpinning study
execution that should be reported to facilitate replication and enable
assessment of validity of studies conducted in large healthcare data-
bases. Methods: We reviewed key investigator decisions required to
operate a sample of macros and software tools designed to create and
analyze analytic cohorts from longitudinal streams of healthcare data.
A panel of academic, regulatory, and industry experts in healthcare
database analytics discussed and added to this list. Conclusion: Evi-
dence generated from large healthcare encounter and reimbursement
databases is increasingly being sought by decision‐makers. Varied
terminology is used around the world for the same concepts. Agreeing
on terminology and which parameters from a large catalogue are
the most essential to report for replicable research would improve

transparency and facilitate assessment of validity. At a minimum,
reporting for a database study should provide clarity regarding opera-
tional definitions for key temporal anchors and their relation to each
other when creating the analytic dataset, accompanied by an attrition
table and a design diagram.

A substantial improvement in reproducibility, rigor and confidence
in real world evidence generated from healthcare databases could be
achieved with greater transparency about operational study parame-
ters used to create analytic datasets from longitudinal healthcare
databases.
Keywords: Transparency, reproducibility, replication, healthcare
databases, pharmacoepidemiology, methods, longitudinal data.
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Introduction

Modern healthcare encounter and reimbursement systems pro-
duce an abundance of electronically recorded, patient‐level lon-
gitudinal data. These data streams contain information on
physician visits, hospitalizations, diagnoses made and recorded,
procedures performed and billed, medications prescribed and
filled, lab tests performed or results recorded, as well as many
other date‐stamped items. Such temporally ordered data are used
to study the effectiveness and safety of medical products, health-
care policies, and medical interventions and have become a key
tool for improving the quality and affordability of healthcare [1,2].
The importance and influence of such “real world” evidence is
demonstrated by commitment of governments around the world
to develop infrastructure and technology to increase the capac-
ity for use of these data in comparative effectiveness and safety
research as well as health technology assessments [3–12].

Research conducted using healthcare databases currently suffers
from a lack of transparency in reporting of study details [13–16]. This
has led to high profile controversies over apparent discrepancies in
results and reduced confidence in evidence generated from health-
care databases. However, subtle differences in scientific decisions
regarding specific study parameters can have significant impacts on
results and interpretation—as was discovered in the controversies
over 3rd generation oral contraceptives and risk of venous throm-
boembolism or statins and the risk of hip fracture [17,18]. Clarity
regarding key operational decisions would have facilitated replica-
tion, assessment of validity and earlier understanding of the reasons
that studies reported different findings.

The intertwined issues of transparency, reproducibility and
validity cut across scientific disciplines. There has been an
increasing movement towards “open science”, an umbrella term
that covers study registration, data sharing, public protocols and
more detailed, transparent reporting [19–28]. To address these
issues in the field of healthcare database research, a Joint Task
Force between the International Society for Pharmacoepidemiol-
ogy (ISPE) and the International Society for Pharmacoeconomics
and Outcomes Research (ISPOR) was convened to address trans-
parency in process for database studies (e.g. “what did you plan to
do?”) and transparency in study execution (e.g. “what did you
actually do?). This paper led by ISPE focuses on the latter topic,
reporting of the specific steps taken during study implementation
to improve reproducibility and assessment of validity.

Transparency and reproducibility in large healthcare databases is
dependent on clarity regarding 1) cleaning and other pre‐processing
of raw source data tables, 2) operational decisions to create an
analytic dataset and 3) analytic choices (Figure 1). This paper focuses
on reporting of design and implementation decisions to define and
create a temporally anchored study population from raw longitudinal
source data (Figure 1 Step 2). A temporally anchored study population
is identified by a sentinel event—an initial temporal anchor. Charac-
teristics of patients, exposures and/or outcomes are evaluated during
time periods defined in relation to the sentinel event.

However understanding how source data tables are cut, cleaned
and pre‐processed prior to implementation of a research study
(Figure 1 Step 1), how information is extracted from unstructured
data (e.g. natural language processing of free text from clinical
notes), and how the created dataset is analyzed (Figure 1 Step 3) are
also important parts of reproducible research. These topics have
been covered elsewhere [14,29–36], however we summarize key
points for those data provenance steps in the online appendix.

Transparency

Transparency in what researchers initially intended to do pro-
tects against data dredging and cherry picking of results. It can be

achieved with pre‐registration and public posting of protocols
before initiation of analysis. This is addressed in detail in a
companion paper led by ISPOR [37]. Because the initially planned
research and the design and methodology underlying reported
results may differ, it is also important to have transparency
regarding what researchers actually did to obtain the reported
results from a healthcare database study. This can be achieved
with clear reporting on the detailed operational decisions made
by investigators during implementation. These decisions include
how to define a study population (whom to study), and how to
design and conduct an analysis (what to measure, when and how
to measure it).

Reproducibility and replicability

Reproducibility is a characteristic of a study or a finding. A
reproducible study is one for which independent investigators
implementing the same methods in the same data are able to
obtain the same results (direct replication [38]). In contrast, a
reproducible finding is a higher order target than a reproducible
study, which can be tested by conducting multiple studies that
evaluate the same question and estimand (target of inference) but use
different data and/or apply different methodology or operational
decisions (conceptual replication [38]) (Table 1).

Direct replicability is a necessary, but not sufficient, compo-
nent of high quality research. In other words, a fully transparent
and directly replicable research study is not necessarily rigorous
nor does it necessarily produce valid findings. However, the
transparency that makes direct replication possible means that
validity of design and operational decisions can be evaluated,
questioned and improved. Higher order issues such as conceptual
replication of the finding can and should be evaluated as well,
however, without transparency in study implementation, it can
be difficult to ascertain whether superficially similar studies
address the same conceptual question.

For healthcare database research, direct replication of a study
means that if independent investigators applied the same design
operational choices to the same longitudinal source data, they
should be able to obtain the same results (or at least a near exact
reproduction). In contrast, conceptual replication and robustness of
a finding can be assessed by applying the same methods to different
source data (or different years from the same source). Here, lack of
replicability would not necessarily mean that one result is more
“correct” than another, or refutes the results of the original. Instead,
it would highlight a need for deeper inquiry to find the drivers of
the differences, including differences in data definitions and
quality, temporal changes or true differences in treatment effect
for different populations. Conceptual replications can be further
evaluated through application of different plausible methodologic
and operational decisions to the same or different source data to
evaluate how much the finding is influenced by the specific
parameter combinations originally selected. This would encom-
pass evaluation of how much reported findings vary with plausi-
ble alternative parameter choices, implementation in comparable
data sources or after flawed design or operational decision is
corrected. However, the scientific community cannot evaluate the
validity and rigor of research methods if implementation decisions
necessary for replication are not transparently reporte.

The importance of achieving consistently reproducible
research is recognized in many reporting guidelines (e.g. STROBE
[34], RECORD [39], PCORI Methodology Report [40], EnCePP [33])
and is one impetus for developing infrastructure and tools to
scale up capacity for generating evidence from large healthcare
database research [3,41–45]. Other guidelines, such as the ISPE
Guidelines for Good Pharmacoepidemiology Practice (GPP)
broadly cover many aspects of pharmacoepidemiology from
protocol development, to responsibilities of research personnel
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and facilities, to human subject protection and adverse event
reporting [46]. While these guidelines certainly increase trans-
parency, even strict adherence to existing guidance would not
provide all the information necessary for full reproducibility. In
recognition of this issue, ISPE formed a joint task force with ISPOR
specifically focused on improving transparency, reproducibility
and validity assessment for database research, and supported a

complementary effort to develop a version of the RECORD
reporting guidelines with a specific focus on healthcare database
pharmacepidemiology.

Any replication of database research requires an exact
description of the transformations performed upon the source
data and how missing data are handled. Indeed, it has been
demonstrated that when researchers go beyond general guidance

Table 1 – Reproducibility and replicability.

Data Methods

Reproducibility Direct replication Same Same
Reproduction of a specific study Different Same

Conceptual replication Same Different
Reproduction of a finding for the exposure (and comparator],

outcome and estimand of interest
Different Different

Figure 1 – Data provenance: transitions from healthcare delivery to analysis results.
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and provide a clear report of the temporal anchors, coding
algorithms, and other decisions made to create and analyze their
study population(s), independent investigators following the
same technical/statistical protocol and using the same data
source are able to closely replicate the study population and
results [47].

The current status of transparency and reproducibility of
healthcare database studies

Many research fields that rely on primary data collection have
emphasized creation of repositories for sharing study data and
analytic code [48,49]. In contrast to fields that rely on primary
data collection, numerous healthcare database researchers rou-
tinely make secondary use of the same large healthcare data
sources. However the legal framework that enables healthcare
database researchers to license or otherwise access raw data for
research often prevents public sharing both of raw source data
itself as well as created analytic datasets due to patient privacy
and data security concerns. Access to data and code guarantees
the ability to directly replicate a study. However, the current
system for multi‐user access to the same large healthcare data
sources often prevents public sharing of that data. Furthermore,
database studies require thousands of lines of code to create and
analyze a temporally anchored study population from a large
healthcare database. This is several orders of magnitude larger
than the code required for analysis of a randomized trial or other
dataset based on primary collection. Transparency requires clear
reporting of the decisions and parameters used in study execu-
tion. While we encourage sharing data and code, we recognize
that for many reasons, including data use agreements and
intellectual property, this is often not possible. We emphasize
that simply sharing code without extensive annotation to iden-
tify where key operational and design parameters are defined
would obfuscate important scientific decisions. Clear natural
language description of key operational and design details should
be the basis for sharing the scientific thought process with the
majority of informed consumers of evidence.

Recent efforts to improve transparency and reproducibility of
healthcare database studies

To generate transparent and reproducible evidence that can
inform decision‐making at a larger scale, many organizations
have developed infrastructure to more efficiently utilize large
healthcare data sources [9,50–56]. Recently developed compre-
hensive software tools from such organizations use different
coding languages and platforms to facilitate identification of
study populations, creation of temporally anchored analytic
datasets, and analysis from raw longitudinal healthcare data
streams. They have in common the flexibility for investigators to
turn “gears and levers” at key operational touchpoints to create
analytically usable, customized study populations from raw lon-
gitudinal source data tables. However, the specific parameters
that must be user specified, the flexibility of the options and the
underlying programming code differ. Many but not all, reusable
software tools go through extensive quality checking and vali-
dation processes to provide assurance of the fidelity of the code
to intended action. Transparency in quality assurance and
validation processes for software tools is critically important to
prevent exactly replicable findings that lack fidelity to intended
design and operational parameters.

Even with tools available to facilitate creation and analysis of
a temporally anchored study population from longitudinal
healthcare databases, investigators must still take responsibility
for publically reporting the details of their design and operational

decisions. Due to the level of detail, these can be made available
as online appendices or web links for publications and reports.

Objective

The objective of this paper was to catalogue scientific decisions
made when executing a database study that are relevant for
facilitating replication and assessment of validity.

We emphasize that a fully transparent study does not imply
that reported parameter choices were scientifically valid; rather,
the validity of a research study cannot be evaluated without
transparency regarding those choices. We also note that the
purpose of this paper was not to recommend specific software
or suggest that studies conducted with software platforms are
better than studies based on de novo code.

Methods

In order to identify an initial list of key parameters that must be
defined to implement a study, we reviewed 5 macro based
programs and software systems designed to support healthcare
database research (listed in appendix). We used this as a starting
point because such programs are designed with flexible param-
eters to allow creation of customized study populations based on
user specified scientific decisions [54,57–60]. These flexible
parameters informed our catalogue of operational decisions that
would have to be transparent for an independent investigator to
fully understand how a study was implemented and be able to
directly replicate a study.

Our review included a convenience sample of macro based
programs and software systems that were publically available,
developed by or otherwise accessible to members of the Task
Force. Although the software systems used a variety of coding
languages, from a methodologic perspective, differences in code
or coding languages are irrelevant so long as study parameters
are implemented as intended by the investigator.

In our review, we identified places where an investigator had
to make a scientific decision between options or create study
specific inputs to create an analytic dataset from raw longitudinal
source data, including details of data source, inclusion/exclusion
criteria, exposure definition, outcome definition, follow up (days
at risk), baseline covariates, as well as reporting on analysis
methods. As we reviewed each tool, we added new parameters
that had not been previously encountered and synonyms for
different concepts.

After the list of parameters was compiled, the co‐authors, an
international group of database experts, corresponded about
these items and suggested additional parameters to include. In‐
person discussions took place following the ISPE mid‐year in
London (2017).

This paper was opened to comment by ISPE membership prior
to publication and was endorsed by ISPE’s Executive Board on July
20, 2017. The paper was also reviewed by ISPOR membership and
endorsed by ISPOR leadership.

Results

Our review identified many scientific decisions necessary to
operate software solutions that would facilitate direct replication
of an analytic cohort from raw source data captured in a
longitudinal healthcare data source (Table 2). After reviewing
the first two comprehensive software solutions, no parameters
were added with review of additional software tools (e.g. “satu-
ration point”). The general catalogue includes items that may not
be relevant for all studies or study designs.
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Table 2 – Reporting specific parameters to increase reproducibility of database studies*.

Description Example Synonyms

A. Reporting on data source should include:
A.1 Data provider Data source name and name of organization that

provided data.
Medicaid Analytic Extracts data covering 50 states from the Centers for

Medicare and Medicaid Services.
A.2 Data extraction

date (DED)
The date (or version number) when data were

extracted from the dynamic raw transactional
data stream (e.g. date that the data were cut for
research use by the vendor).

The source data for this research study was cut by [data vendor] on January
1st, 2017. The study included administrative claims from Jan 1st 2005 to
Dec 31st 2015.

Data version, data pull

A.3 Data sampling The search/extraction criteria applied if the source
data accessible to the researcher is a subset of the
data available from the vendor.

A.4 Source data range
(SDR)

The calendar time range of data used for the study.
Note that the implemented study may use only a
subset of the available data.

Study period, query
period

A.5 Type of data The domains of information available in the source
data, e.g. administrative, electronic health
records, inpatient versus outpatient capture,
primary vs secondary care, pharmacy, lab,
registry.

The administrative claims data include enrollment information, inpatient
and outpatient diagnosis (ICD9/10) and procedure (ICD9/10, CPT, HCPCS)
codes as well as outpatient dispensations (NDC codes) for 60 million lives
covered by Insurance X. The electronic health records data include
diagnosis and procedure codes from billing records, problem list entries,
vital signs, prescription and laboratory orders, laboratory results, inpatient
medication dispensation, as well as unstructured text found in clinical
notes and reports for 100,000 patients with encounters at ABC integrated
healthcare system.

A.6 Data linkage,
other supple-
mental data

Data linkage or supplemental data such as chart
reviews or survey data not typically available with
license for healthcare database.

We used Surveillance, Epidemiology, and End Results (SEER) data on prostate
cancer cases from 1990 through 2013 linked to Medicare and a 5% sample
of Medicare enrollees living in the same regions as the identified cases of
prostate cancer over the same period of time. The linkage was created
through a collaborative effort from the National Cancer Institute (NCI), and
the Centers for Medicare and Medicaid Services (CMS).

A.7 Data cleaning Transformations to the data fields to handle
missing, out of range values or logical
inconsistencies. This may be at the data source
level or the decisions can be made on a project
specific basis.

Global cleaning: The data source was cleaned to exclude all individuals who
had more than one gender reported. All dispensing claims that were
missing day’s supply or had 0 days’ supply were removed from the source
data tables. Project specific cleaning: When calculating duration of
exposure for our study population, we ignored dispensation claims that
were missing or had 0 days’ supply. We used the most recently reported
birth date if there was more than one birth date reported.

A.8 Data model
conversion

Format of the data, including description of
decisions used to convert data to fit a Common
Data Model (CDM).

The source data were converted to fit the Sentinel Common Data Model
(CDM) version 5.0. Data conversion decisions can be found on our website
(http://ourwebsite). Observations with missing or out of range values were
not removed from the CDM tables.

B. Reporting on overall design should include:
B.1 Design diagram A figure that contains 1st and 2nd order temporal

anchors and depicts their relation to each other.
See example Figure 2.

continued on next page
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Table 2 – continued

Description Example Synonyms

C. Reporting on inclusion/exclusion criteria should include:
C.1 Study entry date

(SED)
The date(s) when subjects enter the cohort. We identified the first SED for each patient.

Patients were included if all other inclusion/ exclusion criteria were met at
the first SED. We identified all SED for each patient. Patients entered the
cohort only once, at the first SED where all other inclusion/exclusion criteria
were met. We identified all SED for each patient. Patients entered the cohort
at every SED where all other inclusion/ exclusion criteria were met.

Index date, cohort entry
date, outcome date,
case date, qualifying
event date, sentinel
event

C.2 Person or episode
level study entry

The type of entry to the cohort. For example, at the
individual level (1x entry only) or at the episode
level (multiple entries, each time inclusion/
exclusion criteria met).

Single vs multiple entry,
treatment episodes,
drug eras

C.3 Sequencing of
exclusions

The order in which exclusion criteria are applied,
specifically whether they are applied before or
after the selection of the SED(s).

Attrition table, flow
diagram, CONSORT
diagram

C.4 Enrollment
window (EW)

The time window prior to SED in which an
individual was required to be contributing to the
data source.

Patients entered the cohort on the date of their first dispensation for Drug X
or Drug Y after at least 180 days of continuous enrolment (30 day gaps
allowed) without dispensings for either Drug X or Drug Y.

Observation window

C.5 Enrollment gap The algorithm for evaluating enrollment prior to
SED including whether gaps were allowed.

C.6 Inclusion/
Exclusion
definition window

The time window(s) over which inclusion/ exclusion
criteria are defined.

Exclude from cohort if ICD‐9 codes for deep vein thrombosis (451.1x,
451.2x,451.81, 451.9x, 453.1x, 453.2x, 453.8x,453.9x, 453.40, 453.41, 453.42
where x represents presence of a numeric digit 0‐9 or no additional digits)
were recorded in the primary diagnosis position during an inpatient stay
within the 30 days prior to and including the SED. Invalid ICD‐9 codes that
matched the wildcard criteria were excluded.

Concepts, vocabulary,
class, domain

C.7 Codes The exact drug, diagnosis, procedure, lab or other
codes used to define inclusion/ exclusion criteria.

C.8 Frequency and
temporality of
codes

The temporal relation of codes in relation to each
other as well as the SED. When defining
temporality, be clear whether or not the SED is
included in assessment windows (e.g. occurred on
the same day, 2 codes for A occurred within 7 days
of each other during the 30 days prior to and
including the SED).

C.9 Diagnosis
position (if
relevant/available)

The restrictions on codes to certain positions, e. g.
primary vs. secondary. Diagnoses.

C.10 Care setting The restrictions on codes to those identified from
certain settings, e.g. inpatient, emergency
department, nursing home.

Care site, place of service,
point of service,
provider type

C.11 Washout for
exposure

The period used to assess whether exposure at the
end of the period represents new exposure.

New initiation was defined as the first dispensation for Drug X after at least
180 days without dispensation for Drug X, Y, and Z.

Lookback for exposure,
event free period

C.12 Washout for
outcome

The period prior to SED or ED to assess whether an
outcome is incident.

Patients were excluded if they had a stroke within 180 days prior to and
including the cohort entry date. Cases of stroke were excluded if there was
a recorded stroke within 180 days prior.

Lookback for outcome,
event free period

D. Reporting on exposure definition should include:
D.1 Type of exposure The type of exposure that is captured or measured,

e.g. drug versus procedure, new use, incident,
prevalent, cumulative, time‐ varying.

We evaluated risk of outcome Z following incident exposure to drug X or drug
Y. Incident exposure was defined as beginning on the day of the first
dispensation for one of these drugs after at least 180 days without

continued on next page
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dispensations for either (SED). Patients with incident exposure to both drug
X and drug Y on the same SED were excluded. The exposure risk window
for patients with Drug X and Drug Y began 10 days after incident exposure
and continued until 14 days past the last days supply, including refills. If a
patient refilled early, the date of the early refill and subsequent refills were
adjusted so that the full days supply from the initial dispensation was
counted before the days supply from the next dispensation was tallied.
Gaps of less than or equal to 14 days in between one dispensation plus
days supply and the next dispensation for the same drug were bridged (i.e.
the time was counted as continuously exposed). If patients exposed to
Drug X were dispensed Drug Y or vice versa, exposure was censored. NDC
codes used to define incident exposure to drug X and drug Y can be found
in the appendix. Drug X was defined by NDC codes listed in the appendix.
Brand and generic versions were used to define Drug X. Non pill or tablet
formulations and combination pills were excluded.

D.2 Exposure risk
window (ERW)

The ERW is specific to an exposure and the outcome
under investigation. For drug exposures, it is
equivalent to the time between the minimum and
maximum hypothesized induction time following
ingestion of the molecule.

Drug era, risk window

D.2a Induction period
[1]

Days on or following study entry date during which
an outcome would not be counted as “exposed
time” or “comparator time”.

Blackout period

D.2b Stockpiling [1] The algorithm applied to handle leftover days
supply if there are early refills.

D.2c Bridging
exposure episodes
[1]

The algorithm applied to handle gaps that are longer
than expected if there was perfect adherence (e.g.
non‐overlapping dispensation þ day’s supply).

Episode gap, grace period,
persistence window,
gap days

D.2d Exposure
extension [1]

The algorithm applied to extend exposure past the
days supply for the last observed dispensation in
a treatment episode.

Event extension

D.3 Switching/add on The algorithm applied to determine whether
exposure should continue if another exposure
begins.

Treatment episode
truncation indicator

D.4 Codes, frequency
and temporality of
codes, diagnosis
position, care
setting

Description in Section C. Concepts, vocabulary,
class, domain, care site,
place of service, point
of service, provider type

D.5 Exposure
Assessment
Window (EAW)

A time window during which the exposure status is
assessed. Exposure is defined at the end of the
period. If the occurrence of exposure defines
cohort entry, e.g. new initiator, then the EAW may
be a point in time rather than a period. If EAW is
after cohort entry, FW must begin after EAW.

We evaluated the effect of treatment intensification vs no intensification
following hospitalization on disease progression. Study entry was defined
by the discharge date from the hospital. The exposure assessment window
started from the day after study entry and continued for 30 days. During
this period, we identified whether or not treatment intensified for each
patient. Intensification during this 30 day period determined exposure
status during follow up. Follow up for disease progression began 31 days
following study entry and continued until the firsst censoring criterion was
met.

E. Reporting on follow‐up time should include:
E. 1 Follow‐up window

(FW)
The time following cohort entry during which

patients are at risk to develop the outcome due to
the exposure. FW is based on a biologic exposure
risk window defined by minimum and maximum
induction times. However, FW also accounts for
censoring mechanisms.

Follow up began on the SED and continued until the earliest of
discontinuation of study exposure, switching/adding comparator
exposure, entry to nursing home, death, or end of study period. We
included a biologically plausible induction period, therefore, follow up
began 60 days after the SED and continued until the earliest of
discontinuation of study exposure, switching/adding comparator
exposure, entry to nursing home, death, or end of study period.E.2 Censoring criteria The criteria that censor follow up.

F. Reporting on outcome definition should include:
F.1 Event date ‐ ED The date of an event occurrence. The ED was defined as the date of first inpatient admission with primary

diagnosis 410.x1 after the SED and occurring within the follow up window.
Case date, measure date,

observation date
F.2 Codes, frequency

and temporality of
codes, diagnosis
position, care
setting

Description in Section C. Concepts, vocabulary,
class, domain, care site,
place of service, point
of service, provider type

continued on next page
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Table 2 – continued

Description Example Synonyms

F.3. Validation The performance characteristics of outcome
algorithm if previously validated.

The outcome algorithm was validated via chart review in a population of
diabetics from data source D (citation). The positive predictive value of the
algorithm was 94%.

G. Reporting on covariate definitions should include: Event measures,
observations

G.1 Covariate
assessment window
(CW)

The time over which patient covariates are assessed. We assessed covariates during the 180 days prior to but not including the
SED.

Baseline period

G.2 Comorbidity/risk
score

The components and weights used in calculation of
a risk score.

See appendix for example. Note that codes, temporality, diagnosis position
and care setting should be specified for each component when applicable.

G.3 Healthcare
utilization metrics

The counts of encounters or orders over a specified
time period, sometimes stratified by care setting,
or type of encounter/order.

We counted the number of generics dispensed for each patient in the CAP.
We counted the number of dispensations for each patient in the CAP. We
counted the number of outpatient encounters recorded in the CAP. We
counted the number of days with outpatient encounters recorded in the
CAP. We counted the number of inpatient hospitalizations in the CAP, if
admission and discharge dates for different encounters overlapped, these
were "rolled up" and counted as 1 hospitalization.

G.4 Codes, frequency
and temporality of
codes, diagnosis
position, care
setting

Description in Section C. Baseline covariates were defined by codes from claims with service dates
within 180 days prior to and including the SED. Major upper
gastrointestinal bleeding was defined as inpatient hospitalization with: At
least one of the following ICD‐9 diagnoses: 531.0x, 531.2x, 531.4x, 531.6x,
532.0x, 532.2x, 532.4x, 532.6x, 533.0x, 533.2x, 533.4x, 533.6x, 534.0x, 534.2x,
534.4x, 534.6x, 578.0 ‐ OR ‐ An ICD‐9 procedure code of: 44.43 ‐ OR ‐ A CPT
code 43255

Concepts, vocabulary,
class, domain, care site,
place of service, point
of service, provider type

H. Reporting on control sampling should include:
H.1 Sampling

strategy
The strategy applied to sample controls for

identified cases (patients with ED meeting all
inclusion/exclusion criteria).

We used risk set sampling without replacement to identify controls from our
cohort of patients with diagnosed diabetes (inpatient or outpatient ICD‐9
diagnoses of 250.xx in any position). Up to 4 controls were randomly
matched to each case on length of time since SED (in months), year of birth
and gender. The random seed and sampling code can be found in the
online appendix.

H.2 Matching factors The characteristics used to match controls to cases.
H.3 Matching ratio The number of controls matched to cases (fixed or

variable ratio).
I. Reporting on statistical software should include:
I.1 Statistical

software program
used

The software package, version, settings, packages or
analytic procedures.

We used: SAS 9.4 PROC LOGISTIC Cran R v3.2.1 survival package Sentinel’s
Routine Querying System version 2.1.1 CIDAþPSM1 tool Aetion Platform
release 2.1.2 Cohort Safety

Parameters in bold are key temporal anchors
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The group of experts agreed that the detailed catalogue of
scientific decision points that would enhance transparency and
reproducibility but noted that even if every parameter were
reported, there was room for different interpretation of language
used to describe choices. Therefore future development of clear,
shared terminology and design visualization techniques would
be valuable. While sharing source data and code should be
encouraged (when permissible by data use agreements and
intellectual property), this would not be a sufficient substitute
for transparent, natural language reporting of study parameters.

Data source

Researchers should specify the name of the data source, who
provided the data (A1), the data extraction date (DED) (A2), data
version, or data sampling strategy (A3) (when appropriate), as well
as the years of source data used for the study (A4). As summarized
in the appendix, source data may have subtle or profound differ-
ences depending on when the raw source data was cut for
research use. Therefore, if an investigator were to run the same
code to create and analyze a study population from the same data
source twice, the results may not line up exactly if the investigator
uses a different data version or raw longitudinal source data cut by
the data holding organization at different time points.

When a researcher is granted access to only a subset of raw
longitudinal source data from a data vendor, the sampling
strategy and any inclusions or exclusions applied to obtain that
subset should be reported. For example, one could obtain access
to a 5% sample of Medicare patients flagged with diabetes in the
chronic condition warehouse in the years 2010–2014.

It is also important for researchers to describe the types of
data available in the data source (A5) and characteristics of the
data such as the median duration of person‐time within the data
source. This is important for transparency and ability of decision‐
makers unfamiliar with the data source to assess the validity or
appropriateness of selected design choices. The data type has
implications for comprehensiveness of patient data capture. For
example, is the data based on administrative or electronic health
records? If the latter, does the data cover only primary care,
inpatient settings or an integrated health system? Does it include
lab tests, results or registry data? Does it contain data on
prescribed medications or dispensed medications? Is there
linkage between outpatient and inpatient data? Is there linkage
to other data sources? (A6) If so, then who did the linkage, when
and how?

If the raw source data is pre‐processed, with cleaning up of
messy fields or missing data, before an analytic cohort is created,
the decisions in this process should be described (A7). For
example, if the raw data is converted to a common data model
(CDM) prior to creation of an analytic cohort, the CDM version
should be referenced (e.g. Sentinel Common Data Model version
5.0.1 [61], Observational Medical Outcomes Partnership Common
Data Model version 5.0 [62]) (A8). Or if individuals with incon-
sistent dates of birth or gender were unilaterally dropped from all
relational data tables, this should be documented in meta‐data
about the data source. If the data is periodically refreshed with
more recent data, the date of the refresh should be reported as
well as any changes in assumptions applied during the data
transformation [31,32]. If cleaning decisions are made on a
project specific basis rather than at a global data level, these
should also be reported.

Design

In addition to stating the study design, researchers should
provide a design diagram that provides a visual depiction of
first/second order temporal anchors (B1, Table 3) and their

relationship to each other. This diagram will provide clarity
about how and when patients enter the cohort, baseline charac-
teristics are defined as well as when follow up begins and ends.
Because the terminology for similar concepts varies across
research groups and software systems, visual depiction of time-
lines can reduce the risk of misinterpretation. We provide one
example of a design diagram that depicts these temporal anchors
(Figure 2). In this figure, the study entry date is day 0. A required
period of enrollment is defined during the 183 days prior to but
not including the study entry date. There is also washout for
exposure and outcome in the 183 days prior to but not including
the study entry date. There are two windows during which
covariates are assessed, covariates 1–5 are defined in the 90 days
prior to but not including the study index date whereas cova-
riates 6–25 are defined in the 183 days prior to but not including
the index date. There is an induction period following study entry
so follow up for the outcome begins on day 30 and continues
until a censoring mechanism is met.

Table 3 – Key temporal anchors in design of a
database study.*

Temporal Anchors Description

Data Extraction Date ‐

DED
The date when the data were extracted

from the dynamic raw transactional
data stream

Source Data Range ‐

SDR
The calendar time range of data used

for the study. Note that the
implemented study may use only a
subset of the available data.

First order anchors (event time):
Enrollment Window ‐

EW
The time window prior to SED in which

an individual was required to be
contributing to the data source

Covariate
Assessment
Window ‐ CW

The time during which all patient
covariates are assessed. Baseline
covariate assessment should precede
cohort entry in order to avoid
adjusting for causal intermediates.

Follow‐Up Window ‐

FW
The time following cohort entry during

which patients are at risk to develop
the outcome due to the exposure.

Exposure Assessment
Window ‐ EAW

The time window during which the
exposure status is assessed.
Exposure is defined at the end of the
period. If the occurrence of exposure
defines cohort entry, e.g. new
initiator, then the exposure
assessment may be a point in time
rather than a window. If exposure
assessment is after cohort entry,
follow up must begin after exposure
assessment.

Event Date ‐ ED The date of an event occurrence
following cohort entry

Washout for
Exposure ‐ WE

The time prior to cohort entry during
which there should be no exposure
(or comparator).

Washout for
Outcome ‐ WO

The time prior to cohort entry during
which the outcome of interest
should not occur

* Anchor dates are key dates; baseline anchors identify the avail-
able source data; first order anchor dates define entry to the
analytic dataset, and second order anchors are relative to the first
order anchor
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Exposure, outcome, follow up, covariates and various cohort
entry criteria

A great level of detail is necessary to fully define exposure,
outcome, inclusion/exclusion and covariates. As others have
noted, reporting the specific codes used to define these measures
is critical for transparency and reproducibility [47,63] especially in
databases where there can be substantial ambiguity in code
choice.

The study entry dates (C1) will depend on how they are
selected (one entry per person versus multiple entries) (C2) and
whether inclusion/exclusion criteria are applied before or after
selection of study entry date(s) for each individual (C3). Reporting
should include a clear description of the sequence in which
criteria were applied to identify the study population, ideally in
an attrition table or flow diagram, and description of whether
patients were allowed to enter multiple times. If more than one
exposure is evaluated, researchers should be explicit about how
to handle situations where an individual meets inclusion/exclu-
sion criteria to enter the study population as part of more than
one exposure group.

Also critical are other key investigator decisions including 1)
criteria for ensuring that healthcare encounters would be cap-
tured in the data (e.g. continuous enrollment for a period of time,
with or without allowable gaps) (C4, C5), 2) specific codes used,
the frequency and temporality of codes in relation to each other
and the study entry date (C6–C8), 3) diagnosis position (C9) and
care settings (C10) (e.g. primary diagnosis in an inpatient setting).
Whenever defining temporal anchors, whether or not time
windows are inclusive of the study entry date should be articu-
lated. Some studies use multiple coding systems when defining
parameters. For example, studies that span the transition from
ICD‐9 to ICD 10 in the United States or studies that involve data
from multiple countries or delivery systems. If coding algorithms
are mapped from one coding system to another, details about
how the codes were mapped should be reported.

When “wildcards” are used to summarize code lists instead of
listing out every single potential code, the definition of the
wildcard should be specified. For example, if someone uses “x”
as a wildcard in an algorithm to define a baseline covariate (e.g.
ICD‐9 codes 410. x1), the definition should indicate over what
time period in relation to study entry (covariate assessment
window – CW), which care settings to look in (C11), whether to
include only primary diagnoses (C10), and whether the wildcard
“x” includes only digits 0–9 or also includes the case of no
additional digits recorded. Furthermore, when wildcards are
used, it should be clear whether invalid codes found with a
wildcard match in the relevant digit were excluded (e.g. 410.&1 is
not a valid code but matches 410.x1).

It is important to report on who can be included in a study.
Reporting should include specification of what type of exposure
measurement is under investigation, for example prevalent versus
incident exposure (D1) [64]. If the latter, the criteria used to define
incidence, including the washout window, should be clearly
specified (C11). For example, incidence with respect to the expo-
sure of interest only, the entire drug class, exposure and compa-
rator, etc. When relevant, place of service used to define exposure
should also be specified (e.g. inpatient versus outpatient).

Type of exposure (D1), when exposure is assessed and
duration of exposure influence who is selected into the study
and how long they are followed. When defining drug exposures,
investigators make decisions regarding the intended length of
prescriptions as well as hypothesized duration of exposure effect.
Operationally, these definitions may involve induction periods,
algorithms for stockpiling of re‐filled drugs, creating treatment
episodes by allowing gaps in exposure of up to X days to be
bridged, extending the risk window beyond the end of days’
supply or other algorithms (D2, D3). The purpose of applying such
algorithms to the data captured in healthcare databases is to
more accurately measure the hypothesized biologic exposure risk
window (ERW). The ERW is specific to an exposure and the
outcome under investigation. For drug exposures, it is equivalent
to the difference between the minimum and maximum induction
time following ingestion of a molecule [65,66]. Similar decisions
are necessary to define timing and duration of hypothesized
biologic effect for non‐drug exposures. These decisions are
necessary to define days at risk while exposed and should be
explicitly stated. There may be data missing for elements such as
days’ supply or number of tablets. Decisions about how to handle
missingness should be articulated. When describing the study
population, reporting on the average starting or daily dose can
facilitate understanding of variation in findings between similar
studies conducted in different databases where dosing patterns
may differ. Specific codes, formulations, temporality, diagnosis
position and care settings should be reported when relevant (D4).

For some studies, exposure is assessed after study entry (D5).
For example, a study evaluating the effect of treatment intensifi-
cation versus no intensification on disease progression after a
hospitalization could define study entry as the date of discharge
and follow up for outcomes after an exposure assessment window
(EAW) during which treatment intensification status is defined. The
ERW and follow up for an outcome should not begin until after
EAW has concluded [67]. The timing of EAW relative to study entry
and follow up should be clearly reported when relevant.

The analytic follow up window (FW) covers the interval during
which outcome occurrence could be influenced by exposure (E1).
The analytic follow up is based on the biologic exposure risk, but
the actual time at risk included may also be defined by censoring
mechanisms. These censoring mechanisms should be enumer-
ated in time to event analyses (E2). Reasons for censoring may
include events such as occurrence of the outcome of interest, end
of exposure, death, disenrollment, switching/adding medication,
entering a nursing home, or use of a fixed follow‐up window (e.g.
intention to treat).

Outcome surveillance decisions can strongly affect study
results. In defining the outcome of interest, investigators should
specify whether a washout period prior to the study entry date
was applied to capture incident events (C12). If a washout period
was applied, it should be clear whether the washout included or
excluded the study entry date. The timing of the event date (F1)
relative to the specific codes used and restrictions to certain care
settings or diagnosis position should be reported if they are part
of the outcome definition (F2). If the algorithm used to define the
outcome was previously validated, a citation and performance
characteristics such as positive predictive value should be
reported (F3).

Figure 2 – Example design diagram.
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The same considerations outlined above for outcome defini-
tion apply to covariates (G1, G4). If a comorbidity score is defined
for the study population, there should be a clear description of
the score components, when and how they were measured, and
the weights applied (G2, Appendix C). Citations often link to
papers which evaluate multiple versions of a score, and it can be
unclear which one was applied in the study. When medical
utilization metrics are reported, there should be details about
how each metric is calculated as part of the report (G3). For
example, in counts of medical utilization, one must be clear if
counts of healthcare visits are unique by day or unique by
encounter identifier and whether they include all encounters or
only those from specific places of service. Hospitalizations are
sometimes “rolled up” and counted only once if the admission
and discharge dates are contiguous or overlapping. Patients may
have encounters in multiple care settings on the same date. All
encounters may be counted or an algorithm applied to determine
which ones are included in utilization metrics. Different inves-
tigator choices will result in different counts.

If sampling controls for a case‐control study, how and when
controls are sampled should be clearly specified. Reporting
should include the sampling strategy (H1), whether it is base
case, risk set or survivor sampling. If matching factors are used,
these should be listed and the algorithms for defining them made
available (H2). The number and ratio of controls should be
reported, including whether the ratio is fixed or variable and
whether sampling is with or without replacement (H3). If multi-
ple potential matches are available, the decision rules for which
to select should be stated.

In addition, the statistical software program or platform used
to create the study population and run the analysis should be
detailed, including specific software version, settings, procedures
or packages (I1).

The catalogue of items in Table 2 are important to report in
detail in order to achieve transparent scientific decisions defining
study populations and replicable creation of analytic datasets
from longitudinal healthcare databases. We have highlighted in
Table 3 key temporal anchors that are essential to report in the
methods section of a paper, ideally accompanied with a design
diagram (Figure 2). Other items from Table 2 should be included
with peer reviewed papers or other public reports, but may be
reported in online appendices or as referenced web pages.

After creating an analytic dataset from raw longitudinal data
streams, there are numerous potential ways to analyze a created
analytic dataset and address confounding. Some of the most
common methods used in healthcare database research include
multivariable regression and summary score methods (propen-
sity score or disease risk score matching, weighting, stratifica-
tion) [68,69]. Other methods include instrumental variable
analysis, standardization and stratification. Each of these meth-
ods comes with their own set of assumptions and details of
implementation which must be reported to assess adequacy of
those methods and obtain reproducible results. In the appendix,
we highlight important descriptive or comparative results
to report for several commonly used analytic methods
(Appendix D).

Discussion

Evidence generated from large healthcare databases is increas-
ingly being sought by decision‐makers around the world. How-
ever, publication of database study results is often accompanied
by study design reported at a highly conceptual level, without
enough information for readers to understand the temporality of
how patients entered the study, or how exposure, outcome and
covariates were operationally defined in relation to study entry.

Only after decision‐makers and peer‐reviewers are reasonably
confident that they know the actual steps implemented by the
original researchers can they assess whether or not they agree
with the validity of those choices or evaluate the reproducibility
and rigor of the original study findings.

Stakeholders involved in healthcare are increasingly inter-
ested in evaluating additional streams of evidence beyond
randomized clinical trials and are turning their attention toward
real‐world evidence from large healthcare database studies. This
interest has led to groundbreaking infrastructure and software to
scale up capacity to generate database evidence from public and
private stakeholders. The United States FDA’s Sentinel System is
one example of a large scale effort to create an open source
analytic infrastructure. Supported by FDA to achieve its public
health surveillance mission, the tools and infrastructure are also
available to the research community through Reagan Udall
Foundation’s IMEDS system. Sentinel has committed itself to
transparency through online posting of study protocols, final
reports, and study specifications, including temporal anchors,
how data are processed into a common data model, and study
design details. Similarly, the Canadian government, the European
Medicines Agency (EMA) and several countries in Asia have
developed consortia to facilitate transparent evidence generation
from healthcare databases, including the Canadian Network for
Observational Drug Effect Studies (CNODES) [8], Innovative Med-
icines Initiative (IMI), ENCePP [70] and others [9].

These efforts have made great strides in improving capacity
for transparent evidence generation from large healthcare data-
bases, however many involve closed systems that do not influ-
ence research conducted outside of the respective networks.
Currently, there is not a clear roadmap for how the field should
proceed. This is reflected in policies around the world. In the US,
the recently passed 21st Century Cures Act and Prescription Drug
User Fee Act (PDUFA VI) include sections on evaluating when and
how to make greater use of real world evidence to support
regulatory decisions. In the EU, there is exploration of adaptive
pathways to bring drugs to market more quickly by using health-
care database evidence to make approval decisions [11] and
active work on harmonizing policies on use of real ‐world
evidence from databases to inform health technology assessment
decisions [12].

Regardless of whether a study is conducted with software
tools or de novo code, as part of a network or independently, a
substantial improvement in transparency of design and imple-
mentation of healthcare database research could be achieved if
specific design and operation decisions were routinely reported.
We encourage researchers to prepare appendices that report in
detail 1) data source provenance including data extraction date or
version and years covered, 2) key temporal anchors (ideally with
a design diagram), 3) detailed algorithms to define patient
characteristics, inclusion or exclusion criteria, and 4) attrition
table with baseline characteristics of the study population before
applying methods to deal with confounding. The ultimate meas-
ure of transparency is whether a study could be directly repli-
cated by a qualified independent investigator based on publically
reported information. While sharing data and code should be
encouraged whenever data use agreements and intellectual
property permit, in many cases this is not possible. Even if data
and code are shared, clear, natural language description would be
necessary for transparency and the ability to evaluate the validity
of scientific decisions.

In many cases, attempts from an independent investigator to
directly replicate a study will be hampered by data use agree-
ments that prohibit public sharing of source data tables and
differences in source data tables accessed from the same data
holder at different times. Nevertheless, understanding how
closely findings can be replicated by an independent investigator
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when using the same data source over the same time
period would be valuable and informative. Similarly, evaluation
of variation in findings from attempts to conceptually
replicate an original study using different source data or plausible
alternative parameter choices can provide substantial insights.
Our ability to understand observed differences in findings
after either direct or conceptual replication relies on clarity
and transparency of the scientific decisions originally
implemented.

This paper provides a catalogue of specific items to report to
improve reproducibility and facilitate assessment of validity of
healthcare database analyses. We expect that it will grow and
change over time with input from additional stakeholders. This
catalogue could be used to support parallel efforts to improve
transparency and reproducibility of evidence from database
research. For example, we noted that the terminology used by
different research groups to describe similar concepts varied. A
next step could include development of shared terminology and
structured reporting templates. We also had consensus within
our task force that a limited number of parameters are absolutely
necessary to recreate a study population, however there was
disagreement on which. Empirical evaluation of the frequency
and impact of lack of transparency on the catalogue of specific
operational parameters on replicability of published database
studies would be a valuable next step. Empirical data could
inform future policies and guidelines for reporting on database
studies for journals, regulators, health technology assessment
bodies and other healthcare decision‐makers, where greater
priority could be placed on reporting specific parameters with
high demonstrated influence on replicability. It could also
help stakeholders create policies that triage limited resources
by focusing on database evidence where reporting is
transparent enough that validity and relevance of scientific
choices can be assessed. By aligning incentives of major stake-
holders, the conduct and reporting of database research will
change for the better. This will increase the confidence of
decision‐makers in real‐world evidence from large healthcare
databases.
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