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Appendix D: Constrained Optimization Modeling 1 

Introduction 2 

Constrained optimization (CO) modeling has been applied for over 100 years. It was initially 3 

used to improve work efficiency in various industrial settings. It is currently applied in 4 

healthcare for very diverse purposes, including for capacity management, clinical decision 5 

making, and optimal allocation of resources (Crown et al., 2017). 6 

The focus in this appendix is on using CO modeling to determine whether new vaccination 7 

programs are cost-efficient which means obtaining the best outcome for the limited 8 

resources/cost available. The model therefore provides information on how to optimize health 9 

outcomes with the different intervention options and the different constraints, the latter 10 

mainly on budget and logistics. CO is used to derive the optimal levels of each available 11 

intervention to be selected. 12 

Papers on the use of CO for decisions about communicable disease programs were first 13 

published in the 1970s (Sanders, 1971; Sethi, 1974) and for allocating healthcare resources 14 

across all diseases by the end of the 1990s (Stinnett et al., 1996; Petrou et al., 2000). These 15 

methods were used when the budget, intervention types, and the desired outcomes for 16 

specific health and healthcare domains like diabetes, AIDS, cancer, for instance, could be 17 

clearly delineated. 18 

For CO, a distinction must be made between model construction and the analysis method 19 

used to evaluate the model.  20 

The basis for the model construction is mathematical programming that assembles different 21 

components (variables) among which relationships are found. These relationships are 22 

expressed as mathematical equations that quantify the problem through input and output 23 

variables and the parameter values selected. The results of the model (the output) can be 24 

validated using observational data to test the accuracy of the model construct. Four elements 25 

are needed to develop the mathematical construct:  26 

1. The objective to be optimized must be presented as a maximization or minimization 27 

value of an output variable.  28 

2. The decision variables selected must influence the value of the output variable.  29 

3. The objective function (relationship between the decision variables and the objective) 30 

must comply with a set of constraints, such as budget limits, logistic constraints, or 31 

both.  32 

4. A list of parameter values must quantify the relationship between the decision 33 

variables and the objective and constraints.  34 

Regarding the analysis method for CO, the simplex method is one of the most commonly 35 

used in very diverse industries, such as agriculture, forest management, fisheries, information 36 

technology, and healthcare (Dixit, 1990; Buongiorno et al., 2003). It should, however, be 37 

noted that many optimizing real world problems may be too complex to use the simplex 38 

method. Some examples of the more complex models include having multiple objectives 39 

instead of one, consideration of a very large number of decision variables, with many 40 

constraints, or having a nonlinear relationship between the decision variables and the 41 

objective or objectives and constraints that vary over time. Because those more advanced 42 

problems, where linear functions cannot be derived for all the relationships in the 43 

mathematical model, cannot be solved with the simplex methods, heuristic methods (neural 44 
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networks, genetic algorithms, simulated annealing, etc) are then used. With today’s 45 

computing power, new software to search for the best allocations to these problems exists. 46 

However, problems can grow in size such that solving is computationally very exhaustive. 47 

Consultation with experts is an absolute prerequisite before engaging in such analysis 48 

methods.  49 

A good general reference is Optimization Modeling: A Practical Approach (Sarker and 50 

Newton 2008). A recently published overview on the application of CO in healthcare has 51 

been prepared by the International Society for Pharmacoeconomics and Outcomes Research 52 

Task Force on Constrained Optimization Methods (Crown et al., 2017).  53 

CO has also been used to identify the best approaches for managing certain infectious disease 54 

problems having access to different intervention types. For instance, it was used to identify 55 

the most effective combination of interventions to prevent malaria, such as bed net use, in-56 

house insecticide spraying, preventive drug use, treatment, and vaccination (Walker et al., 57 

2016). CO has also been applied to determine the best combination of screening and 58 

vaccination to prevent human papillomavirus infection and cervical cancer with (Demarteau 59 

et al., 2012, 2014).  60 

An approach closely related to CO to set priorities for developing and introducing new 61 

vaccination programs is the Strategic Multi-Attribute Ranking Tool developed by the 62 

Institute of Medicine in the United States (Madhavan et al., 2012, 2013; IOM, 2012). 63 

Weniger et al. (1998) and Becker and Starczak (1997) previously used a similar approach.  64 

A more recent example of the use of CO modeling to make decisions about new vaccination 65 

programs is the Portfolio Management of Vaccines model (Standaert et al. 2017). This model 66 

helps setting priorities for introducing a vaccination program when different vaccines are 67 

available in the market but no implementation plan is in place because of local constraints. 68 

The constraints might be budgetary or related to feasibility and logistics, such as labor force 69 

availability, cold-chain maintenance, or transportation or delivery facilities. The model ranks 70 

the introduction of different new vaccination programs in a multiyear budget plan to 71 

maximize one or more outcome measures (e.g. QALYs gained, hospitalizations or medical 72 

visits avoided, or medical costs or mortality rates reduced) of interest to the decision maker.  73 

Decision Problem 74 

CO involves the construction of an optimization model and the selection of an optimization 75 

analysis method. The optimization model requires an objective function that is presented in a 76 

mathematical equation relating how the disease of interest is managed through different 77 

interventions in the presence of specific constraints (Earnshaw et al., 2003). The analysis 78 

method predicts the change in the outcome of the objective function by searching for the best 79 

allocation among the possible interventions while considering the constraints using an 80 

optimization algorithm (see section on Model Structure and Assumptions).  81 

A simple example of the use of CO is the knapsack problem (Sarker and Newton, 2008). A 82 

decision needs to be made about which items to put in a knapsack but the weight of what can 83 

be carried has a limit. The selection of items to be in the knapsack is also based on a criteria 84 

of being most useful expressed through a value index. Each item can therefore be chosen 85 

through its weight and specific value index. The optimization algorithm searches for the 86 

highest value to be transported in the knapsack by selecting the best combination of items 87 

within the maximum weight affordable for the knapsack as a constraint.  88 
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In the context of disease management, the knapsack’s weight limit is analogous to the budget 89 

limit for managing a disease, and the items to place in the knapsack are the intervention 90 

options available. Each intervention has a different cost and impact (value index) on the 91 

diseases. The objective function is to maximize the reduction in disease incidence within the 92 

budget constraint by selecting and combining interventions in a way that maximizes the 93 

impact.  94 

Another type of decision problem can also be addressed with this model. It is to identify the 95 

minimum budget required to achieve a certain impact goal, such as reducing a disease’s 96 

incidence by 35% within 5 years using a combination of interventions that has the lowest 97 

overall budget.   98 

Perspective 99 

Applying CO to a vaccination program is most useful from the perspective of a budget holder 100 

as decision maker who will select a mix of interventions to address a specific healthcare 101 

problem, such as all infectious diseases or a specific infectious disease. The budget holder’s 102 

perspective might be limited to healthcare costs and disease prevalence, or it might include a 103 

broader range of inputs, outputs, and constraints to make it more comprehensive. For 104 

example, the ministry of finance might want to learn about a vaccine’s ability to reduce work 105 

absenteeism rates while optimizing tax revenues.  106 

Time Horizon 107 

At least two-time horizons should be considered for CO. One depends on the disease model 108 

used to simulate its natural history with the impact a new intervention under study will have. 109 

The time horizon is that period during which a person remains at risk and during which the 110 

selected intervention will influence that risk. For example, many infectious diseases that can 111 

be prevented with vaccines in children are health risks for the first 5 years of life. Therefore, 112 

the time horizon of the CO model such that the outcome measure can quantify health gains 113 

through the selected interventions should include at least the first 5 years of life.  114 

The other time horizon to assess is the one linked to the application of specific constraints. 115 

For example, a budget holder could have a fixed budget over a number of years to fund the 116 

new intervention. The time horizon of the analysis for that budget holder is then defined by 117 

the years the budget is available.  118 

Model Structure and Assumptions 119 

The structure of a constrained optimization model should be built in three steps, described 120 

below.  121 

The first step is to express or translate the decision problem into an optimization task. 122 

Specifically, the outcome measure to be maximized or minimized needs to be identified for 123 

the diseases under study through specific interventions (= the decision variables). The type of 124 

outcome measures can be, for instance, QALYs gained, DALYs avoided, mortality reduction, 125 

cases avoided, or costs spent on preventing and/or treating the disease. The decision variables 126 

are the different interventions to be selected to achieve the objective. They may include 127 

treatment, screening + treatment, vaccination, etc. The optimal selection of these 128 

interventions is determined based on their contribution to the objective being optimized and 129 

the constraints on these interventions included in the decision problem. 130 
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In a second step, the decision problem is expressed as a mathematical function (objective 131 

function). The outcome measure to be optimized (single objective) is related to the different 132 

decision variables considered. Sometimes, more than one objective can be optimized within 133 

the same model. For example, a multi-objective model might aim to maximize the number of 134 

QALYs gained and avoided hospitalizations, whereas a single-objective model might aim to 135 

maximize the number of QALYs gained only or avoided hospitalizations only. 136 

Constraints on the decision variables or other jurisdiction-specific inputs that the objective 137 

function must satisfy should be listed and defined in the third step. Examples of constraints 138 

are available budget, observed treatment or prevention adherence rates, and feasibility or 139 

minimally acceptable rates of participation in a medical intervention. Constraints can be 140 

expressed as equality/inequality functions (e.g., equal (=), less than or equal to (≤), or greater 141 

than or equal to (≥) a certain predefined value). Constraints may also be mathematically 142 

presented as “either-or” or “if-then” statements. As an example a budget holder is interested 143 

in funding health care interventions such that the maximum number of QALYs is accrued. 144 

The number of interventions given is no more than the number of individuals in the 145 

population who are eligible for the interventions. The budget holder has a limited budget to 146 

spend. To construct the model, first, we define the variables and parameters. For this 147 

example, we have: 148 

Decision variables: 149 

𝑥𝑖 = number of intervention i’s to be funded where i = 1 to n interventions 150 

Parameters: 151 

𝑝𝑖 = QALYs accrued when funding one unit of intervention i where i = 1 to n 152 

interventions 153 

𝑐𝑖 = cost of one unit of intervention i where i = 1 to n interventions 154 

B = budget holder’s budget 155 

P = population eligible for the interventions 156 

Table D1 lists how the model structure could be developed. 157 

Table D1: Defining the model structure of a constrained optimization model. 158 

Step Mathematical formulation Description of equations 

Objective function Max ∑ 𝑝𝑖𝑥𝑖
𝑛
𝑖  Maximize the number of QALYs accrued 

Intervention 

selection constraint 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 … . . +𝑥𝑛 ≤ 𝑃 

Number of interventions selected can be 

no larger than the number of individuals 

eligible for the interventions 

Budget constraint 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐4𝑥4 … . . +𝑐𝑛𝑥𝑛 ≤ 𝐵 Funded interventions can cost no more 

than budget B 

Decision variables 0 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 … 𝑥𝑛 Number of individuals receiving each 

intervention must be 0 or greater 

Parameter values 𝑐1, 𝑐2, 𝑐3, 𝑐4 … 𝑐𝑛, 𝑝1, 𝑝2, 𝑝3, 𝑝4 … 𝑝𝑛 ≥ 0 Cost of and QALYs able to be accrued by 

each intervention unit must be 0 or greater 

The example above is structured as a continuous linear, constrained optimization problem. 159 

These forms are the most straightforward and easiest to solve. However, the real world may 160 

not occur in this format. The objective function and/or constraints could be 161 

nonlinear/dynamic and the decision variable might need to be restricted to integer values. In 162 

these cases, the formulations are the same. It is the analysis method used to find the optimal 163 

allocation that will be more complex. 164 
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Comparators 165 

In CO modeling, no comparison is made. The exercise finds the best combination of 166 

interventions to optimize a health objective given the constraints. However, a budget holder 167 

might use a CO analysis to determine whether and how much the selected optimal mix is 168 

superior to any other alternative that does not apply the optimization algorithms. The 169 

comparator could then be a mix of interventions randomly chosen versus those chosen using 170 

the optimization exercise.  171 

Sometimes, new interventions can only be introduced one at a time because of budget limits. 172 

If so, the optimization exercise can result in a ranking of interventions to introduce 173 

sequentially in a way that allows health objectives to be achieved most efficiently within pre-174 

specified timeframes. The interesting comparator could then be the introduction of 175 

interventions not following the optimization process. They are introduced in a random 176 

fashion or an order determined by the decision maker or budget holder without considering 177 

optimization concerns. 178 

Data Requirements and Sources 179 

Many of the data required for CO are the same as for any other economic analysis of a new 180 

vaccination program (see Appendix C and E). Specifically, data must be collected on 181 

resource use, cost of current and new interventions as well as the disease(s) outcomes with 182 

each intervention.   183 

CO differs from cost-effectiveness analysis and fiscal health modeling as it has a list of 184 

constraints that the analysis process needs to take into account. The constraints to include will 185 

come from budget holders as decision makers, or operational managers taking care of the 186 

logistic consequences of the program such as maintaining a cold chain, developing 187 

stockpiling, ensuring feasible levels of each intervention based on resource and behavior 188 

constraints among others.  189 

Input data about disease outcomes with the alternative interventions for CO models that are 190 

used to address infectious disease problems can come from separate disease models 191 

developed independently of the CO model. This allows the analyst to avoid complexities in 192 

finding the optimal solutions based on dynamic disease models that capture indirect effects of 193 

vaccination programs. Including the dynamic disease models in the objective function 194 

directly could make it difficult to find an exact solution for the optimum combination of 195 

interventions. Running the dynamic model and the CO model in parallel is a more elegant 196 

way to obtain results while keeping the optimization analysis method simple.  197 

Outcome Measures 198 

CO can use single or composite measures to be maximized or minimized, depending on how 199 

the problem is formulated. Single measures that are frequently used include life expectancy 200 

gains; mortality reductions; avoided hospitalizations, medical visits, or disease cases; 201 

reductions in disease-related costs; and maximized net present value. Composite measures 202 

that can be selected include QALYs and combined endpoints, such as reductions in 203 

hospitalization and mortality rates. For a composite endpoint, each component should be 204 

weighted by a specific factor. The process to identify the weighting should be well defined 205 

and clearly reported. 206 
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Discounting 207 

No recommendation for discounting in CO for health care has been issued to date. However, 208 

whether to use discounting is likely to depend on the outcome measure selected in the 209 

objective function and the time horizon for the budget analysis (i.e. whether it is short term or 210 

extended). For example, discounting is needed when the net present value of a new 211 

vaccination program with a longtime horizon is optimized. If the analysis focuses on a time 212 

horizon of no more than 3 years and the outcomes occur within this period, discounting 213 

should not be used. The literature on CO in healthcare, including on the Strategic Multi-214 

Attribute Ranking Tool for vaccines already mentioned in the introduction, shows that a 215 

discount rate for clinical outcomes and for cost of 3% per year is used for studies with a long 216 

time horizon with sensitivity analyses performed for discount rates between 0% to 5% 217 

(Madhavan et al., 2012). 218 

Analysis Method 219 

Many CO models use linear programming to define the objective function if the problem can 220 

be expressed as a continuous, linear function with constraints that are also expressed as linear 221 

functions. The simplex method can then be used to solve the equations, and the results can be 222 

presented in tabular format. The simplex method finds the optimized allocation after 223 

iterations of integrating each decision variable one by one into the allocation process. The 224 

decision variable with the greatest influence on the outcome variable is selected first, and the 225 

next iteration uses the next most influential decision variable. 226 

Linear programs that include variables with integers instead of continuous values may pose 227 

problems in finding appropriate allocations when using the simplex method. Different 228 

alternative methods have been proposed to ensure an allocation is possible. One method 229 

includes solving the integer, linear program as a continuous, linear program using the simplex 230 

method then rounding the non-integer allocation. However, the optimal allocation to the 231 

continuous linear programming model with rounded allocation is not guaranteed to be 232 

optimal or even to be feasible. With today’s computing power, the “branch-and-bound” 233 

approach (Sarker et al., 2008) can be used to solve an integer linear program to optimality. 234 

However, if the number of potential allocations is large (> 20), computation time can be 235 

extensive or the optimal allocation may not be able to be found in a reasonable amount of 236 

time.  237 

If complex optimization models with more than one objective to be reached or with multiple 238 

decision variables and many constraints or that have nonlinear/dynamic features are 239 

constructed, it will be difficult to reach exact allocation. In these situations, heuristic 240 

approaches that apply more sophisticated analysis methods such as neural networking, fuzzy 241 

logic, genetic algorithms, etc. will be chosen to solve the problem. Under such circumstances 242 

it will be important to check the validity of the allocations proposed by those sophisticated 243 

analyses methods. Expert advice in those matters will be more than welcome to better 244 

develop an appropriate analysis plan (Gilli et al, 2003, Wenker et al, 2004). 245 

Uncertainty Analyses 246 

When solving continuous, linear constrained optimization models using the simplex method 247 

via an available software package, a form of sensitivity analysis is outputted along with the 248 

results (Earnshaw et al., 2003). Specifically, the solution output provides us with conditions 249 
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around the objective function coefficients under which decision variables will remain and 250 

become part of the optimal allocation. This includes the range over which the objective 251 

function coefficients for specific decision variables may change while the current allocation 252 

remains optimal or how the objective function coefficients of a specific decision variable 253 

(reduced cost) must change in order for this decision variable to be part of the allocation.  254 

Change in the limits set on constraints is also presented as one can understand the range over 255 

which this limit can vary such that the current allocation stays optimal. Slack or surplus can 256 

indicate how much of the constraint limit is still available to be used. Shadow prices are 257 

helpful for understanding to what extent an increase of one more unit of a constraint’s limit 258 

will improve the outcome of the objective function. 259 

Like other modeling exercises, univariate analyses for specific variables and parameters or 260 

specific scenarios can be developed as well. Stochastic methods could also be applied.  261 

However, they are less well defined. Specifically, development of a full analysis with 262 

stochastic instead of deterministic values is limited. Research continues to identify how to 263 

apply these methods in optimization (Tanner et al., 2008). 264 

Validation 265 

The validation process should include a check of the reliability of the data sources, 266 

assumptions made in the model construct and subsequent results, and whether the disease 267 

model used to generate some of the data inputs in the optimization model (e.g. the impact of 268 

the vaccination program or other interventions on the outcomes of the objective function) fits 269 

the observed disease outcomes. It is also critical that the optimal combination of interventions 270 

identified by the CO meets any feasibility constraints and that their total cost is within the 271 

budget limit. The accuracy of the coding should also be evaluated. 272 

The dual formulation (maximization or minimization of alternative objectives) facilitates the 273 

validation of a CO analysis. When this process is used, the results for the combination of 274 

interventions selected should be the same for both objectives (Sarker and Newton, 2008). 275 

Transparency 276 

Constrained optimization modeling is highly formulaic/mathematical in nature. Thus, a way 277 

to increase transparency is to present a layman’s description of the decision variables, 278 

objective function, and constraints along with the formulation. Transparency is also increased 279 

when the number of decision variables and constraints are limited. As the number of decision 280 

variables and constraints in the equations increase or multiple or nonlinear objective 281 

functions are used instead of linear relationships (Tanner et al., 2008), the formulation can 282 

then be more difficult to follow. 283 

Software Options 284 

Many software options exist for CO, such as Solver in Microsoft Excel and standalone 285 

analysis tools for professionals. Which program to use depends on its price, the objective for 286 

using the software, the availability of technical support, the flexibility needed, its ability to 287 

handle many constraints and decision variables, how often the modeling approach is used, 288 

and whether extended sensitivity analysis is needed. The following websites describe 289 

programs available for CO: 290 

 Optimizely (www.optimizely.com) 291 

 AIMMS Prescriptive Analytics Platform (Aimms.com) 292 
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 O.R. & Analytics (www.informs.org) 293 

Reporting 294 

The Consolidated Health Economic Evaluation Reporting Standards should be used to report 295 

the results of all health economic analyses (Husereau et al., 2013). The question to answer 296 

must be specified in the report, as must the reasons for selecting the method used because 297 

many people might not be familiar with CO. The methodology section of the report needs to 298 

describe the objective function, decision variables, and constraints used as well as the 299 

perspective of the analysis (e.g. whether the perspective is that of one decision maker, the 300 

budget holder, or more than one decision maker). The sensitivity analysis should include 301 

scenario analyses as well as one-way or multi-way analyses so that readers can understand 302 

which input values have the most impact on the results.  303 

The results section may include a graphical presentation if feasible, but it is unlikely when the 304 

optimization model is allocating among more than three interventions (i.e., decision 305 

variables). A tabular format will then be the main presentation form of the results. Finally, the 306 

discussion section should highlight why the selected method is a good approach for the 307 

problem to be analyzed, as stated in the introduction. 308 

Strengths and Limitations of CO 309 

CO modeling cannot be used in all conditions, but it does provide flexibility for assessing the 310 

ability to use a combination of different interventions to achieve a given objective (e.g., 311 

screening programs with different recall frequencies for early detection of cervical cancer). It 312 

also allows constraints to be included that are not necessarily quantifiable in other modeling 313 

approaches but can be measured qualitatively, such as by ethical and or equity considerations 314 

(Stinnett et al., 1996). 315 

Constrained optimization modeling is a system of equations that can be graphically plotted in 316 

mathematical planes. However, once more than three decision variables are in the equations, 317 

it becomes challenging to present graphically the problem and the optimal allocations.  318 

Also as problems grow in number of decision variables and constraints, solving to optimality 319 

will become more challenging. But with today’s computing power, optimization software is 320 

able to facilitate the search for allocations. 321 

Meanwhile, what makes constrained optimization modeling most attractive is the direct link 322 

between the availability of a budget and a health goal to be reached. When different options 323 

are available for reaching a certain objective, solving such a problem will enable one to 324 

understand the degree to which a new vaccination program should be used instead of or in 325 

addition to other available intervention while meeting budget and other constraints. The 326 

interconnections between the different interventions to be combined for reaching a health 327 

objective makes the price setting of each more transparent related to the budget constraint. It 328 

helps to prioritize the new and current interventions and promote a budget plan over several 329 

years. 330 
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