
 

 

Appendix C: Supporting Information on Best-Practice 1 

Recommendations for Cost-Effectiveness Analysis 2 

 

The cost-effectiveness analysis (CEA) guidelines presented in the task force report complement 3 

general CEA guidelines for all health conditions (Drummond et al., 2015; Neumann et al., 2017; 4 

Wilkinson et al., 2016) and guidelines developed for vaccination programs, such as those used in 5 

Europe (Ultsch et al., 2016) and by the World Health Organization (Walker et al., 2010).  6 

All of these guidelines informed the Task Force report, although the primary sources used for our 7 

recommendations are those of Ultsch et al. (2016) and those for low- and middle-income 8 

countries (LMICs) of Wilkinson et al. (2016). The best-practice guidelines presented in this task 9 

force report result from discussions among task force members and input from International 10 

Society for Pharmacoeconomics and Outcomes Research members and others with experience in 11 

economic evaluations of vaccines.  12 

Guidance for the CEA of vaccination programs is required because of the nature of the specific 13 

characteristics of infectious diseases encountered in evaluating vaccination programs, although 14 

these characteristics are not necessarily unique to vaccination programs. These characteristics 15 

include indirect health effects such as herd effects (because a vaccine received by one person can 16 

affect the health of others) or sero-type replacement, transmitted resistance and disease age 17 

distribution effects resulting from the receipt or nonreceipt of vaccines that depend on 18 

immunization coverage rates. Immunization coverage rates might depend on provider and 19 

individual choices and jurisdiction requirements. Therefore, complex epidemic models to 20 

estimate the health outcomes of vaccination programs are desirable if resources and data to 21 

support these models are available (Pitman et al., 2012). However, these resources and data are 22 



 

 

frequently limited, especially in LMICs. In addition, uncertainty analyses can be difficult to 23 

complete for complex epidemic models.  24 

Several studies also have identified the potential economic benefits of vaccination programs 25 

beyond health improvement, including increased productivity, reduced financial risk for 26 

households, increased educational attainment, increased equity in health outcomes, and reduced 27 

risk of disease for tourists (Vuerget et al., 2016; Bärnighausen et al., 2014; Jit et al., 2015; and 28 

Ozawa et al., 2012). A tutorial for performing “extended cost-effectiveness analysis” is provided 29 

by Verguet and colleagues (2016). Although these benefits might be important for decisions 30 

about investment in vaccination programs and can be included in economic analyses, they are 31 

also associated with other types of healthcare interventions. Analysts should therefore be 32 

cautious in applying these broader benefits only to vaccination programs if their decisions could 33 

also affect funding for interventions targeted at other diseases. In this task force report, our focus 34 

is on recommendations for cost-effectiveness analysis using health outcomes as the only measure 35 

of effectiveness for vaccination programs. 36 

Decision Problem 37 

Framing a decision problem requires the analyst to identify the decision maker(s) and 38 

characterize the decision context (i.e. the objectives of and constraints on choices). The analyst 39 

must also identify individuals and organizations likely to be affected by the decisions (i.e. public 40 

health departments, the target population, people in contact with the target population, and 41 

providers). It is also necessary to examine the infrastructure needed to support a new health care 42 

intervention (e.g. delivery system and staff for vaccination programs compared with testing 43 



 

 

facilities and staff for screening programs for cervical cancer) and the nature and expected size of 44 

the impact (eg, number of disease cases or deaths prevented).  45 

Perspective 46 

The CEA perspective defines the scope and types of costs, health outcomes, and other outcomes 47 

to be investigated. The perspective depends on decision maker objectives and the decision 48 

context. A perspective that encompasses all possible factors that might influence the welfare of 49 

all those affected by the decision is rarely practical (Culyer 2014). It is more common for the 50 

perspective to be defined by the legal and professional concerns of the commissioning agency. 51 

For example, a minister of health might require the scope to include only the costs and health 52 

effects for which he or she is politically responsible. These outcomes might include all health 53 

system costs attributable to the vaccination program but not the costs to, for example, the 54 

education sector if the program is implemented in schools. A trade union might consider only the 55 

costs and effects of a workplace vaccination program to workers, whereas an employer might 56 

also consider the impact on business profitability. A member of the target population for the 57 

vaccination program might only consider the possible side effects, the vaccination price, and its 58 

impact on the risk of a disease and its outcomes.  59 

Model Structure  60 

The literature on model structures for vaccination programs has distinguished between cohort 61 

models, focusing on the lifetime costs and health outcomes of a single vaccinated cohort, and 62 

population models, focusing on the cumulative population costs and health outcomes over the 63 

chosen time horizon (Ultsch et al., 2016; Jit and Brisson, 2011) (see Table C1). Flowcharts that 64 

provide best-practice guidelines for choices between cohort models and population-based models 65 



 

 

have been published (Ultsch et al., 2016; Jit and Brisson, 2011). A population-based model that 66 

uses the results of a dynamic transmission epidemic model to estimate the direct and indirect 67 

health outcomes of the vaccination program on the population of interest is recommended when 68 

indirect effects are expected, although there may be resource and limits to data availability to 69 

develop these models especially in LMICs.  70 

A static cohort model should only be used in place of a dynamic model, if either (a) the vaccine 71 

has no effect on the transmission of a disease (such as vaccines against non-communicable 72 

diseases such as therapeutic cancer vaccines), or (b) if all the following conditions hold: 73 

 The vaccine has no negative direct or indirect health effects (such as changes to the 74 

average age of infection, serotype replacement or changes to the periodicity of outbreaks 75 

that may affect health care resource needs), and 76 

 Even without the positive herd effects or other indirect health effects the vaccine is cost-77 

effective, and 78 

 79 

 The evaluation is simply used to decide whether or not to introduce a vaccine, and not for 80 

price negotiations, budget impact analysis or budget optimization 81 

 For example, a cost-effectiveness analysis of a herpes zoster infection vaccination program, 82 

assumed that the program did not affect the disease transmission rate because this rate was 83 

assumed to be very low or nonexistent (Blank et al., 2017).  84 

Cohort-based model structures are typically based on disease incidence and short- and long-term 85 

outcomes using, for example, decision trees, Markov models, and patient-level simulation 86 

models (Wilkinson et al., 2016). The model structure is designed primarily to represent the new 87 

and comparator interventions’ impact on disease incidence and associated outcomes for a single 88 



 

 

cohort receiving these interventions. A cohort model compares the costs and health outcomes of 89 

the vaccination program for the targeted cohort with a relevant comparator intervention based on 90 

estimates of clinical efficacy and durability of effect, validated surrogates for these clinical 91 

outcomes derived from immune response if no clinical outcomes data are available, and adverse 92 

events.  93 

Once a vaccination program is implemented, individuals in the cohort who are eligible for 94 

vaccination, regardless of whether they are vaccinated, and other members of the population in 95 

contact with the eligible cohort experience health effects. To include health effects for those not 96 

vaccinated in a CEA, a population-based dynamic-transmission modeling approach is required. 97 

Population-based CEAs for vaccination programs use the outputs of dynamic-transmission 98 

epidemic models as inputs into the economic analysis. The economic analysis combines 99 

estimates of the resource use associated with the vaccination program and the disease prevented 100 

along with the health outcomes from the epidemic model to calculate incremental costs and 101 

health outcomes. These costs and health outcomes are based on the cumulative costs (vaccination 102 

and disease related) and cumulative health outcomes for the population of interest over the 103 

selected time horizon(s), regardless of whether everyone in the population is vaccinated (Kim et 104 

al., 2008; Mauskopf et al., 2012).  105 

The economic calculations can be integrated into the epidemic model or used in a separate 106 

model. For some diseases, the economic analysis might require a disease progression model 107 

describing changes in the disease over time in addition to the epidemic model (e.g. for a 108 

vaccination program for prevention of human papillomavirus [HPV] because not everyone 109 

infected with HPV will develop the final health outcome, cervical cancer) (Nygard et al., 2014). 110 

For vector-borne diseases, such as malaria, the epidemic model might include interactions 111 



 

 

between humans and the vector (Tediosi et al., 2006). Dynamic transmission models can be 112 

deterministic (eg, a compartmentalized susceptible-infectious-recovered model for the 113 

population) or stochastic (eg, an agent-based simulation model following all individuals in the 114 

population). Stochastic models can track individuals in the epidemic model and therefore 115 

accommodate individual variability but require more data than deterministic models (Ultsch et 116 

al., 2016; Pitman et al., 2012).  117 

Dynamic transmission models are designed for a specific disease and vaccination program. 118 

These models take into consideration type of vaccine efficacy (reducing infectiousness of those 119 

vaccinated who still get the disease versus changing the number of people susceptible to 120 

infection; Longini et al., 1996); cases avoided and other outcomes (eg, hospitalizations or 121 

deaths); whether the vaccine provides all-or-nothing protection versus partial protection; herd 122 

effects; validated surrogates for clinical outcomes derived from immune response if no clinical 123 

outcomes data are available; adverse events from vaccination and the vaccination program’s 124 

impact on serotype replacement or age shifts; and comparative effectiveness of different 125 

vaccination programs or other interventions (Ultsch et al., 2016; Pitman et al., 2012).  126 

Time Horizon 127 

The time horizon for CEA is the maximum number of years after the vaccination program starts 128 

for calculating estimates. For interventions without external health effects (eg, those that target 129 

noncommunicable diseases or that are designed for communicable diseases using a cohort model 130 

structure), a time horizon of the duration of the illness or of the vaccination program’s impact for 131 

a typical individual or cohort should be adopted (Drummond et al., 2015). However, when a 132 

population approach with a dynamic transmission model is used for programs designed to 133 

prevent communicable diseases to capture relevant externalities and to estimate changes in 134 



 

 

infection force and number of disease cases for the whole population, a specific time horizon 135 

must be selected for which to present cumulative costs and health outcomes for the population. 136 

In this case, the vaccination program’s effects that continue beyond the selected time horizon are 137 

not captured (Pitman et al., 2012; Mauskopf et al., 2012).  138 

In published studies, a rationale given for choosing the number of years of costs and health 139 

outcomes to include in population models has been the number of years after initiation of the 140 

vaccination program until the annual number of disease cases estimated using the epidemic 141 

model has reached a steady state (i.e. does not change further over time) (Mauskopf et al., 2012; 142 

Ultsch et al., 2016; O’Mahony et al., 2015). An alternative approach sometimes used in 143 

population CEAs is to compare the costs and quality-adjusted life years (QALYs) using the costs 144 

and outcomes for the epidemic model for a single year after the model has reached a steady state 145 

with the vaccination program with the costs and QALYs for a single year without the vaccination 146 

program. 147 

Comparators 148 

The comparators should include the new vaccination program, current prevention interventions 149 

for the disease(s) of interest, and changes in other interventions under consideration, such as 150 

increased resources for current prevention programs or for disease management, based on the 151 

stated decision problem (Drummond et al.,2015; Wilkinson et al., 2016). Features of alternative 152 

vaccination programs under conservation can also be compared; these might include programs 153 

with different vaccine doses and schedules, expected coverage rates, delivery mechanisms, 154 

catch-up programs (e.g. a catch up program in adolescents 11-17 years of age for meningitis and 155 

routine use in those 11 years of age [Ortega-Sanchez et al., 2008]) and population subgroups 156 

targeted (e.g. certain age or risk groups for pneumonia vaccines [Porchia et al., 2017] or different 157 



 

 

sexes for HPV vaccine [Ben Had Yahia et al., 2015]). When several population subgroups can be 158 

targeted by a vaccination program, an incremental analysis of possible combinations of 159 

subgroups should be considered in addition to analyses of each subgroup separately if contact 160 

rates among subgroups are significant (WHO, 2016). 161 

Outcome Measures 162 

QALYs and disability-adjusted life-years (DALYs) are multidimensional ratio scale measures of 163 

health that capture longevity and aspects of health-related quality of life, such as morbidity and 164 

absence of pain; their measurement is described extensively elsewhere (Gold et al., 2002; 165 

Augustovski et al., 2017). The measure used in the decision context should also be used for the 166 

CEA. QALYs and DALYs have been used frequently in CEAs of vaccination programs 167 

(Mauskopf et al., 2012; Augustovski et al., 2017). Intermediate outcomes, such as reductions in 168 

disease incidence (cases avoided), long-term sequelae, hospitalizations, or deaths, should also be 169 

presented in all analyses if they are relevant to the disease and decision context and of interest to 170 

the decision maker.  171 

Vaccination program–related and other prevention program-related costs should include those of 172 

implementing the program, including, where relevant, costs of vaccines (or what the costs would 173 

be if the vaccines are donated), delivery, cold chain, program infrastructure, economies or 174 

diseconomies of scope or scale (e.g. those related to the delivery of multiple vaccines in one 175 

provider visit [vaccine bundling]), vaccine spoilage from cold-chain failure or other causes, 176 

achievement of high coverage rates, and treatment for vaccine-related adverse events. Disease-177 

related costs should include those of healthcare resources for inpatient and outpatient treatment. 178 

Additional individual, family, and population vaccination program–related outcome measures 179 

could be included in the CEA depending on the disease, perspective, and decision context if 180 



 

 

credible data are available for the vaccination program and its comparators. These outcome 181 

measures might include productivity losses for parents from a vaccination program for children 182 

and from diseases in children; changes in productivity and educational attainment attributable to 183 

reduced incidence of disease and its complications; changes in financial risk to the household 184 

because of reduced rates of premature mortality, acute symptoms, or long-term disease 185 

complications; changes in antibiotic resistance in the population because of changes in the need 186 

for antibiotic therapy; and elimination of disease that might have other macroeconomic effects, 187 

such as industrial development or tourism (Verguet et al., 2016; Bärnighausen et al., 2014). 188 

When including these measures, the results can be presented as shown in the Tutorial on 189 

extended cost-effectiveness analysis by Verguet and colleagues (2016). Alternatively, these 190 

outcomes can be presented in an impact inventory list of the magnitude of the different cost and 191 

effectiveness outcomes expected instead of a cost-effectiveness ratio or net-benefits analysis, as 192 

recommended by the Second U.S. Panel on Cost-effectiveness in Health and Medicine (Sanders 193 

et al., 2016; Neumann et al., 2017).  194 

Data Sources  195 

Because many input parameters are needed to estimate the cost-effectiveness of a new 196 

vaccination program, these data should be obtained using a comprehensive and transparent 197 

process from published information when possible. When input data needed for cohort or 198 

population models are not available for the epidemic and economic estimates with and without 199 

the new vaccination program or its comparators, inputs should be selected that allow validation 200 

of the disease incidence rate without the new program against observed values, if available, or 201 

against values extrapolated from those available for similar populations. In addition, when only 202 

very limited data are available on vaccine durability, herd immunity, and other long-term indirect 203 



 

 

effects, estimates of vaccine efficacy over time should be based on scientific plausibility or 204 

expert experience with similar vaccines.  205 

Three major categories of data are needed to populate the economic models:  206 

1. Epidemic and population data to estimate the current age-specific incidence, mortality, 207 

severity, virus serotypes or genotypes, and other disease outcomes in the population of 208 

interest 209 

2. Input data to estimate the vaccination program’s impact on the age-specific incidence, 210 

mortality rate, severity, virus serotypes or genotypes, and age distribution of disease 211 

cases as well as vaccination-related adverse events or cold-chain distribution failure rates 212 

3. Data on all vaccination and comparator program-related and disease-related costs and 213 

health outcomes to estimate changes in costs and QALYs or DALYs associated with the 214 

vaccination program and its comparators and, for the broader perspective, data on 215 

nonhealth effects, such as productivity losses (eg, parents’ lost work time to vaccinate a 216 

child or care for a child with the disease), reduced educational attainment, antimicrobial 217 

resistance, and family financial risk, depending on the availability of credible data and 218 

the interests of the decision maker 219 

Input Data Needed to Estimate Current Disease Epidemiology and Vaccination Program 220 

Impacts  221 

For a static cohort model, the information and data required to estimate the current disease 222 

incidence rate and expected changes with the new vaccination program include the current age-223 

specific disease incidence by severity, vaccine coverage rates and the vaccine’s efficacy in 224 

reducing age-specific disease incidence rates and severity over time since the vaccination.  225 



 

 

For a population or cohort model using the outputs from a dynamic transmission model, the data 226 

required to model current age-specific disease incidence rates and the changes in disease 227 

incidence include population mixing patterns, contact rates by age group, disease duration and 228 

infectivity for each contact, duration and waning of immunity to the disease for those infected, 229 

vaccine uptake rates, the vaccine’s ability to create immunity at first, annual immunity waning 230 

rate for those vaccinated, and vaccination externalities, including herd effects and serotype 231 

replacement for the whole population (Ultsch et al., 2016; Pitman et al., 2012).  232 

Suggested sources of epidemic and vaccination program impact data include the following: 233 

 National clinical and/or serological observational studies of annual age-specific disease 234 

incidence and age-specific prevalence of immunity to the disease in the country of interest or 235 

in a country with similar characteristics 236 

 Age- and country-specific population mixing and contact patterns, such as those estimated in 237 

the POLYMOD study in eight European countries (Mossong et al., 2008). In addition, the 238 

number of social contact surveys being conducted is rapidly increasing, although still limited, 239 

especially in LMICs. A recent systematic review (Hoang et al., 2018) found 64 surveys in 24 240 

countries (8 in LMICs i.e. China, Thailand, Vietnam, Kenya, South Africa, Zambia, 241 

Zimbabwe and Peru). For countries without these data, contact matrices have been proposed 242 

that make use of demographic and social activity data to construct synthetic matrices (eg. 243 

Prem et al., 2017). 244 

 Published epidemic models for the disease of interest in the country of interest or in a country 245 

with similar characteristics. Dynamic models are usually fitted to measures of either past 246 

infection (eg. seroprevalence) or current infection (eg. culture or DNA detection). Since these 247 

data are also needed to understand the aetiology of syndromic surveillance for respiratory, 248 



 

 

enteric and other diseases, they are becoming more common, and global laboratory 249 

surveillance networks have been set up for many organisms 250 

(http://www.who.int/immunization/monitoring_surveillance/burden/laboratory/en/). In cases 251 

where these are not available, analysts may have to rely on more general surveillance 252 

pyramids and/or symptomaticity rates in the literature. 253 

 Estimates of vaccine coverage rates in the target population based on coverage rates observed 254 

in similar vaccination programs in the country of interest or in countries with similar culture 255 

and demographics 256 

 Estimates of serotype replacement based on observed data in other countries or based on 257 

plausible assumptions. 258 

 Clinical trials or observational studies of vaccine efficacy and efficacy waning (immune 259 

response, clinical cases avoided, or both). For example, for pneumococcal pneumonia 260 

vaccination in adults Bonten et al. [2015] report clinical outcomes and Juergens et al. [2014] 261 

present immunogenicity data from randomized trials.  262 

Input Data Needed to Measure Costs and Health and Nonhealth Outcomes 263 

Data on the costs and outcomes of implementing a vaccination program could come from 264 

multiple sources, including published studies, local and central government agencies, healthcare 265 

agencies, and community organizations.  Cost and health and other outcomes data required to use 266 

the epidemic model results to estimate the vaccination program’s cost-effectiveness might 267 

include the following:  268 

 The full costs of implementing the vaccination program, including the costs of the vaccines 269 

(or what the costs would have been if the vaccine is donated), delivery, cold chain, program 270 

http://www.who.int/immunization/monitoring_surveillance/burden/laboratory/en/


 

 

infrastructure, and treatment for vaccine adverse events; economies or diseconomies of scope 271 

or scale related, for example, to the delivery of multiple vaccines in one provider visit 272 

(bundling of vaccines); vaccine spoilage from cold-chain failure or other causes; and costs of 273 

achieving high coverage rates (if relevant), disease progression rates after infection (e.g. after 274 

HPV infection), and long-term complication rates and costs of the disease (e.g. meningitis).  275 

 Age-specific costs of treatment and QALYs or DALYs lost because of the disease of interest 276 

without the vaccination program based on estimates of the proportion of cases at different 277 

levels of severity  278 

 Extent of long-term complications  279 

 Costs of treatment and of QALYs or DALYs lost because of breakthrough cases of the 280 

disease of interest (depending on disease severity and age) 281 

 Productivity losses for parents of childhood vaccination-related and disease-related care and 282 

for adults of undergoing vaccination and preventing disease  283 

 Changes in antimicrobial resistance, educational attainment, or family financial risk levels 284 

Discount Rates  285 

Several related contentious issues have arisen about discounting for vaccination and other 286 

healthcare programs, including whether differential discount rates should be used for costs and 287 

effects, whether lower discount rates should be used when long-term outcomes data are 288 

available, and the appropriateness of various discount rates (Jit and Mibei, 2015).  289 

Recommendations about differential discount rates vary among current guidelines. Ultsch et al. 290 

(2016), for example, recommend differential discounting with a discount rate for benefits that is 291 

50% lower than for costs and lower discount rates for both costs and health effects with longer 292 

time horizons. In contrast, Wilkinson et al. (2016) recommend discounting costs and health 293 



 

 

effects at the same rate (3%) in the base case as well as sensitivity analyses that use lower 294 

discount rates when the time horizon is longer than 30 years. However, there is no obvious 295 

reason why the discount rates used for vaccination programs should differ from those applied to 296 

evaluations of other healthcare interventions in the same country.  297 

 Debate continues about the methodological merits and shortcomings of differential discounting 298 

(O’Mahoney and Paulden, 2014; Claxton et al., 2011) and the bases for discount rates. Claxton 299 

and colleagues (2011) demonstrated that the implications of discounting differ by whether the 300 

decision maker’s goal is to maximize health (extrawelfarist approach) or the consumption value 301 

of health (welfarist approach).  302 

The study by Claxton et al. (2011) showed that discounting of both costs and health effects at the 303 

discount rate for future consumption when the goal is to maximize health is only appropriate if 304 

the cost-effectiveness threshold stays constant over time and the level of willingness to trade 305 

current and future health is the same as that for willingness to trade current and future 306 

consumption. Because the level of willingness to trade current and future health is probably 307 

lower than that of willingness to trade current and future consumption, the discount rate for costs 308 

and health effects should be lower than that for future consumption. In addition, an increase in 309 

the threshold value for the cost-effectiveness ratio over time would support use of a lower 310 

discount rate for the health effects than for the costs (Claxton et al., 2011).  311 

Claxton et al. also showed that the effects on discount rates are similar when the decision 312 

maker’s goal is to maximize the consumption value of health. Thus, the discount rates for both 313 

costs and health effects are likely to be lower than those for future consumption if the 314 

consumption value of health increases over time. Moreover, the discount rates for health are 315 



 

 

likely to be lower than those for costs if the threshold value for the cost-effectiveness ratio 316 

increases over time (Claxton et al., 2011).  317 

Given the findings of Claxton and colleagues, the discount rate for both costs and health effects 318 

for many decision contexts in healthcare should be lower than the discount rate used for future 319 

consumption. However, the discount rates for health effects should be lower than for costs only 320 

if the cost-effectiveness threshold is expected to increase over time.  321 

Analysis and Interpretation of Results  322 

How results are reported in CEAs reflects their central aim of identifying and recommending for 323 

funding interventions for which benefits exceed opportunity costs.  324 

When the chosen measure of benefit is health change (eg, QALYs or DALYs gained or lost), an 325 

intervention should have a positive net health benefit (NHB) compared with the comparators to 326 

be cost effective (Phelps et al., 1991; Stinnett et al., 1998), such that  327 

     NHB = incremental health gains – incremental health costs > 0  328 

 NHB = Q – C/λ > 0  329 

In this equation, Q is the expected incremental health gains (eg, QALYs or DALYs averted) 330 

resulting from the intervention, C is the incremental cost of the intervention (eg compared with 331 

comparators), and λ is the cost-effectiveness threshold representing the opportunity costs of 332 

health forgone (ie, cost per QALY or DALY of interventions that can no longer be provided 333 

because of resources that are no longer being available). Alternatively, net benefit can be 334 

expressed as net monetary benefit (Q*λ – C). The comparator offering the greatest net benefit or 335 

net monetary benefit is deemed most cost-effective. Alternatively, positive funding 336 



 

 

recommendations can be made if the cost per QALY or DALY gained of the intervention (the 337 

ICER) is less than the cost-effectiveness threshold, λ. For countries in which a specific threshold 338 

value has not been determined, the opportunity costs of the new vaccination program should be 339 

estimated using available data on healthcare spending and mortality rates (Revill et al., 2015) or 340 

alternative values based on expert opinion and used as the value of λ. 341 

The advantage of net benefit (either monetary or health) is that the magnitude of likely 342 

population health improvement or loss from vaccination programs or the change due to other 343 

constraints (e.g. limited health system capacity) affecting the delivery or receipt of those 344 

vaccines is made evident. This advantage can inform subsequent decisions about how to use 345 

cost-effectiveness information, such as for prioritizing implementation or health system–346 

strengthening activities (e.g. increasing the availability of community healthcare workers) that 347 

are likely to be particularly important for vaccine delivery and for informing future research.  348 

Cost-effectiveness thresholds or opportunity costs are likely to vary across and within countries 349 

depending on income level, healthcare spending, disease burden, claims on the budget, and the 350 

extent to which the budget is fixed (Cleemput et al., 2011; Revill et al., 2015; Woods et al., 2016; 351 

Glassman et al., 20916; Culyer, 2016; Robinson et al., 2017). For both net-benefits calculations 352 

and ICERs, a value of opportunity costs of health that are foregone is often used as a threshold 353 

value. Unfortunately, in many countries with health technology assessment agencies, the cost-354 

effectiveness thresholds that have come to be recognized were never explicitly related to 355 

opportunity costs. The same is true for the previously recommended Commission on 356 

Macroeconomics and Health threshold values related to annual average gross domestic product 357 

per person (i.e. cost per QALY of either 1 or 3 times annual the per-capita gross domestic 358 

product [WHO, 2001]). An emerging area of research is now offering estimates of thresholds 359 



 

 

representing opportunity costs for all countries (Woods et al., 2016; Ochalek et al., 2015; Revill 360 

et al., 2015), but uncertainty about these estimates remains. These estimates should therefore be 361 

applied with caution unless the decision makers have a clear and well-considered view of the 362 

opportunity costs.  363 

An impact inventory list can be included for consideration in decision processes (see perspective 364 

and outcomes sections) (Sanders et al., 2016; Neumann et al., 2017), but its effect on decisions 365 

will depend solely on the judgments and discretion of the decision makers. If nonhealth effects 366 

are formally incorporated into a CEA, the opportunity costs of these nonhealth benefits generated 367 

by interventions foregone must be considered because resources were unavailable for other 368 

interventions.  369 

Analysis of Uncertainty  370 

Uncertainty analysis should be performed for the cost-effectiveness estimates to test the impact 371 

of variability in the model structure as well as assumptions and inputs used to estimate the health 372 

and economic outcomes (Bilcke et al., 2011).  373 

For the cohort models, vaccination program, disease-related, and non–disease-related costs as 374 

well as the impact of credible ranges of all input parameter values on the cost-effectiveness ratios 375 

can be tested in one-way and multiway sensitivity analyses.  376 

Disease dynamics, both real and modeled using dynamic transmission models, are inherently 377 

nonlinear, which means that they are sensitive to small changes in parameter values and starting 378 

conditions (e.g. changes in population demographics over time) (Pitman et al., 2012). This is 379 

particularly true when the disease is not in a stable endemic state. Thus, the impact on cost-380 



 

 

effectiveness ratios should be estimated in one-way sensitivity analyses varying a broad range of 381 

alternative inputs and structural assumptions for the dynamic transmission models. These inputs 382 

and assumptions include variations in structure to capture the potential impact of the vaccination 383 

program on the disease (eg, impact of varicella vaccination on herpes zoster incidence) and 384 

variations in input values for population-mixing matrices, disease duration and infectivity, 385 

vaccine coverage and efficacy, and immunity waning (Pitman et al., 2012).  386 

Probabilistic sensitivity analysis is generally considered optimal to fully reflect decision 387 

uncertainty (Drummond et al., 2015; Sanders et al., 2016) but is likely to be unwieldy for cost-388 

effectiveness models for new vaccination programs. This is especially true for CEA with a 389 

dynamic transmission model because of the large number of input parameters for which values 390 

are assumed because experimental or observational data are lacking and because of the 391 

importance of structural uncertainty due to the complexity of the relationships in the model. In 392 

addition, the probability distributions for many of the input parameter values are unknown when 393 

the vaccination program is first introduced. If probabilistic sensitivity analyses are not feasible, 394 

scenario analyses could be useful. In these analyses, multiple parameters are varied at the same 395 

time to reflect feasible alternatives (e.g. alternative estimates of contact patterns in the epidemic 396 

model and alternative estimates of disease-related outcomes and costs that might be observed in 397 

different countries). In addition, multiway sensitivity analyses can combine variations in 398 

structural and parameter uncertainty that cannot be combined in probabilistic sensitivity 399 

analyses.  400 

In addition to structural and parameter uncertainty, the impact of the vaccination program on 401 

different population subgroups (e.g. different age groups or people living in different regions) 402 

might vary. Exploring subgroup variability might be especially important when a broader range 403 



 

 

of outcomes is included in the analysis. Factors such as the costs of implementation might be 404 

uncertain and vary widely for different population subgroups, even within the same country, 405 

particularly if the vaccine is delivered by healthcare workers in hard-to-reach rural locations 406 

within LMICs. In these settings, sensitivity analyses of delivery and implementation costs should 407 

be undertaken.  408 

Validation  409 

An International Society for Pharmacoeconomics and Outcomes Research task force report on 410 

transparency and validation (Eddy et al., 2012) described five types of validity that are relevant 411 

to economic models: face, internal, cross, external, and predictive validity. The application of 412 

these types of validity to vaccination programs is discussed in the second appendix of that report. 413 

For vaccination programs, face validity requires experts to assess whether the model’s structure, 414 

assumptions, and input parameter values appear credible based on their knowledge of the 415 

disease, population dynamics, and vaccination program impact. Internal validity requires careful 416 

checking of the computer programming of the dynamic transmission model and economic 417 

calculations to ensure that they are error free. Cross validity, external validity, and predictive 418 

validity all require comparing the results from the model or calculations with results from other 419 

similar models using current observational data or observational data collected after the 420 

vaccination program began.  421 

In general, input parameters for dynamic transmission models are calibrated to fit real-world data 422 

so that the model outcomes reflect observed disease incidence, trends over time, or natural 423 

history. Matching the model outcomes to real-world data can help establish the model’s 424 

credibility with decision makers (Pitman et al., 2012). It is also important, where possible, to 425 

validate the model using a different dataset from that used to calibrate the model (Ultsch et al., 426 



 

 

2016). In addition, where possible, the outcomes of the dynamic transmission model and the 427 

CEA results should be validated after the vaccination program is implemented. Kanpirom et al. 428 

(2017) point out that the cost-effectiveness results might change over time since the program 429 

began. Programs that initially appear not to be cost-ineffective might become cost-effective over 430 

time once program initiation costs are paid for and economies of scale and efficiencies are 431 

realized.  432 

Software  433 

The software used to create the model can affect the model’s transparency and ease of use. 434 

Microsoft Excel and TreeAge Pro can be used for cohort models. Microsoft Excel can also be 435 

used to create a model that integrates the code for the dynamic transmission model and to 436 

calculate the costs and effects using health outcomes from the dynamic transmission model. 437 

However, changing structural assumptions after they are coded in an Excel spreadsheet program 438 

might be challenging, and solutions to the differential equations in the dynamic transmission 439 

model might be less accurate in Excel than with other methods. It is also difficult to implement 440 

modern uncertainty analysis and parameter inference methods (e.g. Markov chain Monte Carlo) 441 

efficiently in Microsoft Excel. 442 

Software specifically designed for dynamic transmission models, such as Stella by isee Systems 443 

Inc. and Berkeley Madonna, are available. The health outcomes from these programs can be 444 

transferred to an Excel model to calculate the population costs and number of disease cases 445 

avoided with the vaccination program. However, these packages might prevent the programmer 446 

from incorporating all desired assumptions. Therefore, customizable code, such as MATLAB, R, 447 

or C/C++, might be preferred to allow programming of an integrated epidemic and economic 448 



 

 

model, although this approach may be less transparent to policy makers. Regardless of the 449 

software used, the program code should be extensively documented so that another researcher 450 

familiar with the programming language can readily understand the model structure, 451 

assumptions, and calculations. 452 

Transparency  453 

Transparency means that both decision makers and other stakeholders understand how the 454 

analysis was performed, including underlying assumptions and likely limitations. A transparent 455 

process limits the possibility that researchers’ idiosyncratic values will be imposed on those 456 

making decisions (Wilkinson et al., 2016). Because the computations in a dynamic transmission 457 

model are complex and involve mathematical calculations that might not be familiar to all 458 

decision makers, transparency for this model usually requires a clear written description of the 459 

model as well as a flow diagram of the model’s structure and assumptions in a technical report. 460 

The equations used to drive the model and all input parameter values, including details about 461 

their derivation from the data sources, can be presented in a technical appendix.  462 

In addition to providing a clear and complete description of the model and the computer program 463 

used, the model developers should declare any conflicts of interest. If the model is adapted from 464 

a model created for another country by other researchers, those adapting the model should 465 

determine all the assumptions in the original model and provide a detailed list of those 466 

assumptions in their description of the adapted model.  467 

Reporting  468 

Technical reports and publications on models should follow the Consolidated Health Economic 469 

Evaluation Reporting Standards (CHEERS) (Husereau et al., 2013). According to these 470 



 

 

guidelines, a modeling expert should be able to replicate the model using the information 471 

provided, which requires that the model’s structure, assumptions, input parameter values, and 472 

derivations be described in detail. In addition, because readers might not have access to the 473 

software used to develop the model, the results presented should include extensive uncertainty 474 

analyses. In particular, results should be reported for scenarios with different structural 475 

assumptions, such as different contact matrices or coverage rates in dynamic transmission 476 

models with population models or with and without a herd factor in cohort models if the results 477 

are sensitive to these assumptions.  478 

 479 

REFERENCES 480 

Augustovski F, Colantonio L, Galante J, et al. Measuring the benefits of healthcare: DALYs and 481 

QALYs –does the choice of measure matter? A case study of two preventive interventions. Int J 482 

Health Policy Manag, 2018, 7: 120-136.  483 

Bärnighausen T, Bloom DE, Cafiero-Fonseca ET, O’Brien JC. Valuing vaccination. Proc Natl 484 

Acad Sci USA. 2014;111(34):12313-19.  485 

Bilcke J, Beutels P, Brisson M, Jit M. Accounting for methodological, structural, and parameter 486 

uncertainty in decision -analytic models: a practical guide. Med Decis Making. 2011; 31: 675-487 

692. 488 

Blank PR, Ademj Z, Lu X, Szucs TD, Schwenkglenks, M. Herpes zoster vaccine: a health 489 

economic evaluation for Swiitzerland. Hum Vaccin Immunother. 2017; 13: 1495-1504.  490 



 

 

Bonten MJ, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Gault S et al. Polysaccharide 491 

conjugate vaccine against pneumococcal pneumonia in adults. New Engl J Med. 2015; 372: 492 

1114-1125.  493 

Claxton K, Paulden M, Gravelle H, Brouwer W, Culyer AJ. Discounting and decision making in 494 

the economic evaluation of health-care technologies. Health Econ. 2011 Jan;20(1):2-15. doi: 495 

10.1002/hec.1612. Epub 2010 May 12.  496 

Cleemput I, Neyt M, THiry N, De Laet C, Leys M. Using threshold values for cost per quality-497 

adjusted life-year gained in healthcare decisions. Int J Technol Assess Health Care. 2011; 27:71-498 

6. doi: 10.1017/S0266462310001194. Epub 2011 Jan 25.  499 

Culyer AJ, “Are there really ten good arguments for a societal perspective in the economic 500 

evaluations of medical innovations?” in A J Culyer and G Kobelt (eds.) Portrait of a Health 501 

Economist: Festschrift in Honour of Bengt Jönsson, Lund: Institute of Health Economics, 2014, 502 

33-38.  503 

Culyer AJ, Cost-effectiveness thresholds in health care: a bookshelf guide to their meaning and 504 

use. Health Econ Policy Law, 2016, 11(4): 415-32.  505 

Delgleize E, Leeuwenkamp O, Theodorou E, van de Velde N. Cost-effectiveness analysis of 506 

routine pneumococcal vaccination in the UK: A comparison of the PHID-CV vaccine and the 507 

PCV-13 vaccine using a Markov model. BMJ Open. 2016; 6: e010776. 508 

Drummond MF, Sculpher, M., Claxton, K., Stoddart, G.L., Torrance, G.W. Methods for the 509 

Economic Evaluation of Health Care Programmes (4th edition). Oxford University Press; 2015.  510 

https://www.ncbi.nlm.nih.gov/pubmed/?term=ClaxtonK%2CPauldenM%2CGravelleH%2Cetal.Discountinganddecision
https://www.ncbi.nlm.nih.gov/pubmed/?term=ClaxtonK%2CPauldenM%2CGravelleH%2Cetal.Discountinganddecision


 

 

Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB; ISPOR−SMDM 511 

modelling good research practices task force. Model transparency and validation: A report of the 512 

ISPOR-SMDM modelling good research practices task force. Value Health. 2012 513 

SepOct;15(6):843-50. doi: 10.1016/j.jval.2012.04.012.  514 

Ethgen O and Standaert B. Population- versus Cohort-Based Modelling Approaches. 515 

Pharmacoeconomics, 2012; 30(3): 171-181. 516 

Glassman A, Canon O, Silverman R. How to get cost-effectiveness analysis right? The case of 517 

vaccine economics in Latin America. Value Health. 2016; 19: 913-920. 518 

Gold MR, Stevenson D, Fryback DG. HALYS and QALYS and DALYS, Oh My: similarities 519 

and differences in summary measures of population Health. Annual review of public health. 520 

2002;23:115-134.  521 

Hsia EC, Chung JB, Schwartz JS, Albert DA Cost-effectiveness analysis of the Lyme disease 522 

vaccine. Arthritis Rheum. 2002 Jun;46(6):1651-60. 523 

Jit M, Brisson M. Modelling the epidemiology of infectious diseases for decision analysis: a 524 

primer. Pharmacoeconomics, 2011; 29: 371-86.  525 

Jit M, Hutubessy R, Png ME, Sundaram N, Audimulam J, Salim S, Yoong J. The broader 526 

economic impact of vaccination: reviewing and appraising the strength of evidence. BMC 527 

Medicine 2015 13:209, DOI: 10.1186/s12916-015-0446-9.  528 

Jit M, Mibei W. Discounting in the evaluation of the cost-effectiveness of a vaccination 529 

programme: a critical review. Vaccine. 2015; 33:3788-3794.  530 

Juergens C, de Villiers PJ, Moodley K, Jayawardene D, Jansen KU, Scott DA et al. Safety and 531 

immunogenicity of 13-valent pneumococcal conjugate vaccine formulations with and without 532 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hsia%20EC%5BAuthor%5D&cauthor=true&cauthor_uid=12115198
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chung%20JB%5BAuthor%5D&cauthor=true&cauthor_uid=12115198
https://www.ncbi.nlm.nih.gov/pubmed/?term=Schwartz%20JS%5BAuthor%5D&cauthor=true&cauthor_uid=12115198
https://www.ncbi.nlm.nih.gov/pubmed/?term=Albert%20DA%5BAuthor%5D&cauthor=true&cauthor_uid=12115198
https://www.ncbi.nlm.nih.gov/pubmed/12115198


 

 

aluminum phosphate and comparison of the formulation of choice with 23-valent pneumococcal 533 

polysaccharide vaccine in elderly adults: a randomized open-label study. Hum Vaccin 534 

Immunother. 2014; 10: 1343-1353.  535 

Kanpirom K, Luz ACG, Chalkidou K, Teerawattananon. How should global fund use value-for-536 

money information to sustain its investments in graduating countries? Int J Health Policy Manag. 537 

2017; 6: 529-533.  538 

Kim SY, Goldie SJ. Cost-effectiveness analyses of vaccination programmes: a focused review of 539 

modelling approaches. Pharmacoeconomics. 2008; 26: 191-215.  540 

Longini IM Jr, Datta S, Halloran ME. Measuring vaccine efficacy for both susceptibility to 541 

infection and reduction in infectiousness for prophylactic HIV-1 vaccines. J Acquir Immune 542 

Defic Syndr Hum Retrovirol. 1996; 13: 440-447. 543 

Mauskopf J, Talbird S, Standaert B. Categorization of methods used in cost-effectiveness 544 

analyses of vaccination programs based on outcomes from dynamic transmission models. Expert 545 

Rev Pharmacoecon Outcomes Res. 2012; 12: 357-371.  546 

Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolaiczyk R, et al. Social contacts and 547 

mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008; 5: e74.  548 

Neumann P, Sanders G, Russel L, Siegel J, Ganiats T (eds). Cost-effectiveness in Health and 549 

Medicine. 2nd edition. Oxford University Press; 2017.  550 



 

 

Nygard M, Hansen BT, Dillner J, Munk C, Oddsson K, Tryggyadottir L et al. Targeting human 551 

papillomavirus to reduce the burden of cervical, vulvar and vaginal cancer and pre-invasive 552 

neoplasia: establishing the baseline for surveillance. PLoS One. 2014: 9: e88323.  553 

Nymark L, Sharma T, Miller A, ENemark U, Griffiths U. Inclusion of the value of herd 554 

immunity in economic evaluations of vaccines. A systematic review of methods used. Vaccine, 555 

2017; 35: 6828-6841. 556 

O’Mahony JF, Newall AT, van Romalen J. Dealing with time in health economic evaluation: 557 

methodological issues and recommendations for practice. Pharmacoeconomics. 2015; 33: 1255-558 

1268.  559 

O’Mahony JF, Paulden M. NICE’s selective application of differential discounting: ambiguous, 560 

inconsistent and unjustified. Value Health. 2014 Jul;17(5):493-6. doi: 561 

10.1016/j.jval.2013.02.014. Epub 2013 May 15.  562 

Ochalek J, Lomas J, Klaxton K. Cost per DALY averted thresholds for low- and middle-income 563 

countries: evidence from cross-country data. Center for Health Economics Research Paper 122; 564 

University of York, December, 2015.  565 

Ortega-Sanchez IR, Meltzer MI, Shepard C, Zell E, Messonnier ML, Bilukha O, Zhang X. 566 

Economics of an adolescent meningococcal conjugate vaccination catch-up campaign in the 567 

United States. Clin Infect Dis. 2008; 46: 1-13.  568 

Ozawa S, Mirelman A, Stack ML, Walker DG, Levine OS. Cost-effectiveness and economic 569 

benefits of vaccines in low- and middle-income countries: a systematic review. Vaccine. 2012; 570 

31: 96-108.  571 

https://www.ncbi.nlm.nih.gov/pubmed/25128041
https://www.ncbi.nlm.nih.gov/pubmed/25128041


 

 

Phelps CE, Mushlin AI. On the (near) equivalence of cost-effectiveness and cost-benefit 572 

analyses. Int J Technol Assess Health Care. 1991; 7: 12-21. 573 

Pitman R, Fisman D, Zaric GS, Postma M, Kretzschmar M, Edmunds J, Brisson M; Dynamic 574 

transmission modelling: a report of the ISPOR-SMDM Modelling Good Research Practices Task 575 

Force. Med Decis Making. 2012; 32: 712-21.  576 

Porchia BR, Bonanni P, Bechini A, Bonaccorsi G, Boccalini S. Evaluating the costs and benefits 577 

of pneumococcal vaccination in adults. Expert Rev Vaccines. 2017; 16: 93-107.   578 

Prem K, Cook A, Jit M. Projecting social contact matrices in 152 countries using contact surveys 579 

and demographic data. PLoS Comp Biol 2017; 13(9):e1005697. 580 

Revill P, Woods B, Sculpher M. Economic Evaluation of Healthcare Programs and 581 

Interventions: Applications to Low- and Middle-Income Countries. In: Scheffler RM, ed. World 582 

Scientific Handbook of Global Health Economics and Public Policy. Vol 1: World Scientific 583 

Publishing; 2015.  584 

Robinson LA, Hammitt JK, Chang AY, Resch S. Understanding and improving the one and three 585 

times GDP per capita cost-effectiveness thresholds. Health Policy Plan. 2017; 32: 141-145.  586 

Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn M et al. Recommendations for 587 

conduct, methodological practices, and reporting of cost-effectiveness analyses: Second Panel on 588 

Cost-effectiveness in Health and Medicine. JAMA. 2016; 316 : 1093-1103.  589 

Smit R, Postma MJ. Vaccines for tick-borne diseases and cost-effectiveness of vaccination: a 590 

public health challenge to reduce the diseases' burden. Expert Rev Vaccines. 2016;15(1):5-7. 591 

https://www.ncbi.nlm.nih.gov/pubmed/26559456
https://www.ncbi.nlm.nih.gov/pubmed/26559456


 

 

Stinnett AA, Mullahy J. Net health benefits: a new framework for the analysis of uncertainty in 592 

cost-effectiveness analysis. Medical decision making : an international journal of the Society for 593 

Medical Decision Making. 1998;18(2 Suppl):S68-80.  594 

Tediosi F, Maire N, Smith T, Hutton G, Utzinger J, Ross A, Tanner M. An approach to model 595 

the costs and effects of case management of Plasmodium falciparum malaria in sub-saharan 596 

Africa. Am J Trop Med Hyg. 2006; 75 (Supp): 90-103.   597 

Thang Van Hoang, Pietro Coletti, Alessia Melegaro, Jacco Wallinga, Carlos Grijalva, John 598 

Edmunds, Philippe Beutels, Niel Hens. A systematic review of social contact surveys to inform 599 

transmission models of close contact infections. bioRxiv 2018. doi: 600 

https://doi.org/10.1101/292235. 601 

Ultsch B, Damm O, Beutels P, et al. Methods for health economic evaluation of vaccines and 602 

immunization decision frameworks: a consensus framework from a European vaccine economics 603 

community. Pharmacoeconomics, 2016, 34(3): 227-44.  604 

Verguet, S, Kim, JJ & Jamison, DT. Extended Cost-Effectiveness Analysis for Health Policy 605 

Assessment: A Tutorial. PharmacoEconomics, 2016; 34(9), pp.913–923.  606 

Walker D, Hutubessy R, Beutels P. WHO guide for standardisation of economic evaluations of 607 

immunization programmes. Vaccine, 2010, 8; 28(11): 2356-9.  608 

WHO, Macroeconomics and Health. Geneva: World Health Organization; 2001. Available from 609 

http://apps.who.int/iris/bitstream/10665/42435/1/924154550X.pdf  610 

https://doi.org/10.1101/292235
http://apps.who.int/iris/bitstream/10665/42435/1/924154550X.pdf
http://apps.who.int/iris/bitstream/10665/42435/1/924154550X.pdf


 

 

WHO. Guidance on the economic evaluation of influenza vaccination. 2016. Available at: 611 

http://apps.who.int/iris/bitstream/10665/250086/1/WHO-IVB-16.05-eng.pdf. Accessed August 612 

23, 2017.  613 

Wilkinson T, Sculpher MJ, Claxton K et al. The International Decision Support Initiative 614 

Reference Case for Economic Evaluation: an aid to thought. Value in Health. 2016. 2016 615 

Dec;19(8):921-928. doi: 10.1016/j.jval.2016.04.015.  616 

Woods B, Revill P, Sculpher M, Claxton K. Country-level cost-effectiveness thresholds: initial 617 

estimates and the need for further research. Value Health. 2016: 19: 929-35.  618 

Ben Had Yahia MB, Jouin Bortolotti A, Dervaux B. Extending the human papillomavirus 619 

vaccination programme to include males in high-income countries: a systematic review of the 620 

cost-effectiveness studies. Clin Drug Investig. 2015; 35: 471-485.   621 

   

 

 

 

 

 

 

 

http://apps.who.int/iris/bitstream/10665/250086/1/WHO-IVB-16.05-eng.pdf
http://apps.who.int/iris/bitstream/10665/250086/1/WHO-IVB-16.05-eng.pdf
http://apps.who.int/iris/bitstream/10665/250086/1/WHO-IVB-16.05-eng.pdf
http://apps.who.int/iris/bitstream/10665/250086/1/WHO-IVB-16.05-eng.pdf
http://apps.who.int/iris/bitstream/10665/250086/1/WHO-IVB-16.05-eng.pdf
http://apps.who.int/iris/bitstream/10665/250086/1/WHO-IVB-16.05-eng.pdf
http://apps.who.int/iris/bitstream/10665/250086/1/WHO-IVB-16.05-eng.pdf
http://apps.who.int/iris/bitstream/10665/250086/1/WHO-IVB-16.05-eng.pdf

