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This is the first of two articles in this issue 
on the topic of algorithmic advances in 
HEOR. Dr. Onukwugha et al. illustrate 
the potential for insight and hypothesis 
generation from observational data via 
the use of EventFlow and the Grouping 
Algorithm for Cancer Data. 

Introduction
Hypothesis-driven data analysis is the 
traditional cornerstone of the advancement 
of medical knowledge. These analyses 
will typically rely on informed, carefully-
developed hypotheses generated from prior 
studies. Exclusive reliance on statistical 
hypothesis testing for evidence generation 
may result in missed opportunities to 
develop new evidence from observational 
data, as statistical hypothesis testing is 
designed to answer previously-formulated 
questions and not to identify new areas for 
inquiry. As the growth in health information 
technology increases the availability of big 
data (i.e., large-volume, high velocity and 
varied data) for health services research, 
we have the opportunity to consider new 
approaches to generate evidence from 
observational data, including visualization 
tools and data-driven algorithms. These 
exploratory methods include both data-
driven statistical analysis and visualization. 
We briefly distinguish hypothesis testing 
from hypothesis generation and then 
illustrate the latter with two case studies.  

Hypothesis testing (HT) research utilizes 
existing bodies of knowledge and data to 
specify an a priori hypothesis, which is 
tested through experiments designed to 
produce relevant data which can be further 
interpreted [1]. This method is useful 
to investigate the relationship between 
a dependent variable and independent 
variables and has been traditionally used as 
the primary research study design to solve 
scientific problems. Simply stated, HT starts 
with an idea and uses data to empirically 
confirm or reject a hypothesis.

HT is useful when the researcher knows 
which parameter and variables are desired 

to study; however, when variables are 
subjective or no meaningful hypothesis 
can be stated, hypothesis generating 
(HG) designs [2] can be of value. In this 
context, the HG design can be employed 
to explore relationships in the data, to 
produce insights and to develop potential 
hypotheses for further study. Hypothesis-
generating research analyzes data searching 
for relationships and patterns, and then 
proposes an explanatory hypothesis based 
on the findings [3]. The hypothesis may 
then be tested, to either refute or support 
the theory, in subsequent clinical research 
evaluations on datasets different from those 
used to develop the insights. This step 
(referred to as out-of-sample testing) is vital, 
as one of the limitations of HG exercises are 
that insights may be coincidences in the 
dataset; patterns that may seem compelling 
may be random rather than based on 
substantive information. HG does not have 
the constraint of a specific hypothesis, 
which allows this method to explore multiple 
outcomes and pathways. In sum, HT and 
HG are distinct study designs and have a 
role in evidence generation.

Recent advances in statistics, machine 
learning, and visualization enable 
researchers to go beyond traditional 
summary statistics and interactively explore 
large datasets to generate insight and 
develop hypotheses. Traditional hypothesis 
testing focuses on group differences in ‘1st 
order measures’ (e.g., averages), which, 
due to the large sample sizes in large-
volume claims data, are typically highly 
statistically significant and therefore less 
useful for distinguishing systematic patterns.  
Specialized visualization tools allow drill-
down into data sets and the exploration of 
group differences in ‘2nd order measures,’ 
such as “time between events” and “order 
of events.” Specialized tools compare two 
cohorts and automatically create possible 
hypotheses for exploration by the researcher 
[4]. Furthermore, advances in machine 
learning, including computationally effective 
clustering, allow us to derive new insights 
that are not possible with traditional 
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analytical approaches [5]. 

In order to illustrate the utility of these 
advanced analyses for hypothesis 
generation, we first investigate the role 
of visualization on claims data including 
a specific visual analytics tool (VAT) for 
pattern summarization. Second we analyze 
the application of clustering to claims 
data. Both case studies demonstrate the 
value of intuitive visual representation to 
explore data, identify systematic patterns 
(including unexpected patterns), and unlock 
insights that are not typically possible 
through traditional statistical analysis. The 
first example illustrates the use of a VAT 
EventFlow [6,7], to explore prescription 
patterns [8]. The second example illustrates 
the use of a grouping algorithm[9,10] to 
investigate survival and cost accumulation.

Case Study 1 – Visualization of 
Hypertensive Prescriptions and 
Medical Claims Data
When analyzing claims data, visualizing 
sequences of events can be more revealing 
than studying summary statistics, and can 
help guide data cleaning, develop new 
insights and lead to hypothesis generation. 
Visualizations can for example focus on 
the duration of events, the order of events, 
and time between events, allowing for 
analysis of some of the 2nd order statistics 
described above. 

To demonstrate the use of visualization 
for data exploration, we use a simplified 
example of a hypertensive population and 
their claims data that contains hypertensive 
prescriptions. We can view each member 
and his/her prescriptions and medical visits 
as a sequence of events. Prescriptions are 
viewed as interval events (i.e., from the day 
the prescription is filled until the end of the 
supply). In this example, medical visits are 
viewed as point events.

Among patients prescribed hypertensive 
medications, adherence is measured by 
the medication possession ratio (MPR) 
which can vary substantially between 
patients. While calculations of MPR provide 
a quantitative measure of adherence, and 
average adherence of a population is a 
widely-used quantitative measure of 
population adherence, visualization 
provides a unique perspective on the 
prescription filling patterns of patients. This 
unique viewpoint can spark hypothesis 
generation related to prescription fill 

patterns. Once patterns are identified 
visually, with careful thought they can then 
be defined quantitatively for subsequent 
out-of-sample hypothesis testing. Further, 
visualization can aid in identifying missed 
steps in data cleaning and/or help guide 
this stage of the analysis.

Figure 1 is an example of eight 
hypertension patients drawn from a large 
database. Two representative members are 
shown from four strata of MPR: very low 
(0 to <0.25), low (0.25 to 0.5), medium 
(0.5 to <0.75), and high (0.75 and 
above). These members were identified by 
selecting random samples from a large data 
set. Random sampling can be an effective 
method for examining overall patterns in a 
large dataset. Patterns that are prevalent 
in the dataset will also appear in a sample, 
and a sample can be easier to process 
visually. 

Figure 1 reveals interesting patterns 
both within and between MPR strata. 
Among patients with very low MPRs, the 
visualization shows that months typically 

go by between prescription fills. Member 
2 filled two prescriptions before a long gap 
occurred, while member 1 never had two 
successive fills. The review of these patterns 
can guide follow-up work to identify 
commonalities or distinguishing features 
among a larger sample and/or focused 
on individuals with very low MPR. In the 
second panel, showing patients with low 
MPRs, there are also large gaps between 
fills but with more episodes of continuity. By 
the end of the data window, member 4 had 
three successive 90-day fills and appears 
to be adherent. Member 3 did not have 
another fill after January 2010. Without 
the visualization, the similarity of the MPR 
values of these two members would have 
hidden their strikingly-different behaviors.

Among the members with medium and 
high MPRs, different patterns emerge. 
Prescriptions are filled much more 
consistently, with smaller gaps. Member 8 
has two prescription fills on each fill date. 
This could be erroneous duplication in the 
data and should be investigated further and 
possibly cleaned up. 

Figure 1. Visualization of hypertensive drug claims for eight members, stratified by 
MPR. Drug prescriptions are represented as intervals, each interval representing the 
duration of a single prescription.
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By visualizing members with a range of 
MPR we were able to gain a more nuanced 
understanding of the variety of prescription 
filling behaviors. We also detected possibly 
erroneous data that indicates more 
data cleaning could be needed before 
proceeding with the analysis. The diversity 
of refill patterns, if confirmed in a larger 
random sample, could be used to inform 
decisions about whether to aggregate or 
further sub-divide the MPR categories or 
to investigate whether the overall patterns 
are preserved across subgroups of interest 
(e.g., age, race, comorbidity status). 
Furthermore, these visualizations can guide 
the researcher in drilling down in the claims 
data to provide clues to the underlying 
reasons why different members have 
different refill behavior. 

The visualization in Figure 1 used random 
sampling to sample prescription patterns. 
However random sampling is not an 
effective technique for visually detecting 
rare patterns, since if a pattern is rare 
enough it is unlikely to be present in any 
given random sample. Further, random 
sampling does not efficiently summarize 
patterns among subgroups present in 
large populations. Software tools exist to 
visualize large data sets in such a way as 
to bring order to a large sample and make 
it more amenable to visual interpretation. 
Such organization can come from sorting, 
grouping, and other more sophisticated 
techniques. Figure 2 presents an example 
summary generated by a VAT called 
EventFlow [7]. 

Figure 2 gives an overview of the 
prescription patterns of members starting 
on diuretics. From the figure, it is evident 

that in most cases another drug class 
(e.g., CCBs) gets added, often after a short 
time. Further analysis and investigation 
can provide insight to better understand 
differences among the groups of patients 
who switch from diuretics to different 
classes.  Coupled with data on outcomes 
(e.g., hospitalization), these visual 
summaries can generate hypotheses for 
further investigation. For example, Figure 
3 is a visualization of three hypertensive 
patients that are switched away from 
non-dihydropyridines (a subclass of CCBs), 
to other drug classes. The figure includes 
heart failure-related hospitalizations as 
point events (indicated by triangles). For 
patient 1 there are multiple prescriptions 
until the patient is switched away from 
non-dihydropyridines following the 
hospitalization event, and for patient 3, 
the switch is not observed.  Follow-up 
analyses could utilize a larger sample of 
individuals with prescriptions for CCBs 
and visualize non-dihydropyridine and 
dihydropyridine prescribing patterns 
separately for those with and without a 
heart failure-related hospitalization.  Further 

statistical analyses could then characterize 
the use of non-dihydropyridines among 
heart failure patients and test hypotheses 
about the relationship between non-
dihydropyridine use and heart failure-
related hospitalizations.

In addition, EventFlow and other 
visualization tools can support data-driven 
analysis by demonstrating the impact 
of modeling decisions (e.g., allowable 
prescription gap) on outcomes measures 
such as cost and adherence [8]. 

Case Study 2 – Application of a 
Grouping Algorithm to Cancer data
Machine learning algorithms offer an 
advanced way to view data, learn about 
systematic patterns in the data, or develop 
hypotheses for testing. As an example, the 
Grouping Algorithm for Cancer Data (GACD) 
[9] was developed with large sample sizes 
in mind, emphasizing computational time 
and accuracy, and is particularly efficient 
when processing data with multiple 
factors. The algorithm can provide unique 
information for the researcher with regards 
to the outcome of interest, including 
clinical events (e.g., survival) or costs. 
The GACD utilizes quantifiable measures 
(i.e., factors) to first group individuals into 
mutually exclusive groups based on their 
characteristics, and then in a second step 
groups the homogenous group of patients 
together into super-groups (or clusters) that 
are similar in terms of survival. The number 
of super-groups or clusters is chosen by 
the analyst. Table 1 provides an example 
of a group of homogenous patients that 
could be formed from the following five 
measures: cancer stage, age, race, prior 
hospitalization, and geographic location:

This example group represents individuals 
diagnosed with incident stage 4 cancer, 
aged 75 to 79 at diagnosis, African-
American race, without evidence of 

Figure 2. Prescription patterns of members starting on diuretics that have filled at 
least one prescription for each of the five hypertensive drug classes.

Figure 3. Visualization of hypertensive drug claims and cardiac events for three members. 
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Drug prescriptions are noted as an interval, each interval representing a single prescription. 
Inpatient stays associated with heart failure are noted by black triangles. 

Ace indicates angiotension converting enzyme; Arb angiotension receptor beta blocker; 
Ceb calcium channel blocker.
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hospitalization during the 12 months 
prior to diagnosis, and residing in an 
urban location at the time of diagnosis. 
The number of combinations increases 
exponentially with the number of factors 
available for use. The grouping is 
accomplished in four steps, and we refer 
the interested reader to published work 
[9] for the details. Figure 4 (a) represents 
a choice of five super-clusters, resulting 
in five survival curves. Group 3 (black) 
represents individuals with the best 
prognosis while Group 4 (yellow) represents 
individuals with the worst prognosis. Costs 
curves [10] associated with the individual 
survival curves can be created and an 
example curve is presented in Figure 4 (b).

The characteristics of the groups themselves 
as well as comparisons across groups can 
support hypothesis generation. For example, 
when we applied the GACD to cancer 
data (9), we found interesting patterns: 
1) the group with the poorest survival 
was composed of white, non-Hispanic 
individuals living in urban areas, with 
multiple comorbidities at diagnosis and 

diagnosed at age 75 or older; 2) 
the rank ordering of groups based 
on the Charlson Comorbidity Index 
changed between the 12 month 
pre-diagnosis and 12 month post-
diagnosis period, suggesting shifts 
in comorbidity burden following 
cancer diagnosis; 3) particular 
groups stood out in terms of the 
rate of increase in the cost curves 
at the end of the time period. 
Designed studies using a different 
sample could then build on these 
exploratory findings to further 
investigate prognostic factors 

among subgroups, the impact of longitudinal 
changes in comorbidity burden, and cost 
drivers. 

Generating evidence for real-world 
impact
The examples above illustrate paths to 
hypothesis generation using visual analytics 
tools and a grouping algorithm. The use of 
these approaches will not be applicable, 
feasible, or even appropriate for all 
situations. The analyses described in the 
case studies require a comfort level with 
visualizing data, trusting the interactive, 
iterative process that is required to generate 
insight, and using secondary data for 
exploratory analysis. Combining the visual 
output with text summaries, the researcher 
can document the entire process, including 
all the alternatives considered along the 
way. With the documentation of the process 
elements (e.g., data, measures, base and 
alternative scenarios), the hypothesis-
generation process can be subjected to 
review, critique, and improvement where 
appropriate. 

The analyses described in the case studies 
are ideally suited for longitudinal data. 
This focus on the timing of events and 
event sequences provides opportunities 
to investigate the timing of various events 
that are of interest to multiple stakeholders. 
The studies can incorporate contextual 
(e.g., geographic location, area-level 
socioeconomic status, physician-specific, 
institution-specific) information, as 
‘attributes’ in EventFlow and as factors in 
the GACD. The incorporation of contextual 
factors allows one to consider location-
specific prediction models of events and 
associated costs.

In the past few years, computing power 
available to health care researchers 
and practitioners has been increasing 
dramatically due to the growth of 
commodity-based computer cluster, surging 
cloud computing services, as well as the 
ever-growing and maturing Hadoop/Spark 
ecosystem. This has enabled analyzing 
large amounts of data (e.g., over a 
Terabyte) with sophisticated methods from 
statistics and machine learning. Those 
advances offer promising opportunities 
to store and share a variety of data (e.g., 
electronic medical record systems, hospital 
business/operations records) and perform 
sophisticated studies. In particular, this 
kind of interoperability provides the 
opportunity to develop richer datasets 
which increases the number of different 
factors that could be used in the analyses.

In summary, we have illustrated example 
paths from visualization to hypothesis 
generation using health services research 
studies [8,10]. The analyses described 

Table 1: Example of a natural cluster or 
‘combination’

Figure 4: (a) shows the survival curves associated with 5 clusters and (b) shows the corresponding cumulative cost curves
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Factors Value
Stage Stage IV
Age 75-79
Race African-American
Hospitalization in the Not relevant 
12 months prior to  indicator 
cancer diagnosis 
Geographic location Urban
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above are appropriate when there is an 
interest to study the behavior of interval 
and point-based measures over time; can 
be used across various disease settings to 
summarize data and; provide graphical 
output, some of which may be unexpected, 
intriguing, and worthy of further exploration 
in designed studies. While we focus here 
on two case studies, there are many more 
examples [11] that are available for data 
visualization and interactive data analysis. 
Use of these tools for hypothesis generation 
can provide transparency and facilitate 
review, critique, and discussion of this 
important but sometimes misconstrued stage 
of research. When the analytic objectives 
and measures are appropriate, data 
visualization offers numerous possibilities 
for insight and hypothesis-generation using 
large-volume health care data.
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Additional information:
The preceding article is based on a 
workshop given at the ISPOR 21st 
Annual International Meeting.

To view the authors’ presentations, 
go to: http://www.ispor.org/Event/
GetReleasedPresentation/686; 
http://www.ispor.org/Event/
GetReleasedPresentation/687


