ARE SINGLE-ARM CLINICAL TRIALS SUFFICIENT TO ASSESS VALUE IN ONCOLOGY AND RARE DISEASES?

November 14, 2018

Speakers

- Jeroen Jansen PhD
 - Chief Scientist - Evidence Synthesis & Decision Modeling, Precision Xtract

- Omar Dabbous MD MPH
 - Vice President, AveXis

- Mondher Toumi MD PhD MSc
 - Professor, Public Health, Faculté de Médecine, Laboratoire de Santé Publique, Aix-Marseille University
Poll question

- There is an increase in regulatory approvals based on single arm trials, posing potential challenges for HTA. Should we wait for RCTs?
 - No, single arm trials are sufficient to assess value
 - Yes, without RCTs it is difficult to assess value

The challenge with single arm trials in the context of estimating relative treatment effects versus competing interventions

Jeroen Jansen

November 14, 2018
Treatment effects and study effects

Network meta-analysis
Network meta-analysis

Key assumption network meta-analysis

\[
\delta_{AB(AB)} = \delta_{AB(AC)} = \delta_{AB}
\]

Relative treatment effect of B versus A in AB population assumed applicable to AC population (i.e., no differences in effect modifiers between AB and AC populations)

\[
\delta_{AC(AB)} = \delta_{AC(AC)} = \delta_{AC}
\]

Idem for the relative treatment of C versus A

\[
\Rightarrow \delta_{BC} = \delta_{AC} - \delta_{AB}
\]
Common situations

Two single-arm trials

Network of RCTs; one single-arm trial

One single-arm trial; one RCT

When you have only study level data:
“Aggregate level matching” – RCT and single-arm trial
Key assumptions indirect comparison—RCT and single-arm trial

\[\mu_{A(AB)} = \mu_{A(C)} = \mu_A \]

Study effect from AB trial assumed applicable to C trial (i.e., no differences in prognostic factors between AB and C populations)

\[\delta_{AB(AB)} = \delta_{AB(C)} = \delta_{AB} \]
\[\delta_{AC(AB)} = \delta_{AC(C)} = \delta_{AC} \]
\[\Rightarrow \delta_{BC} = \delta_{AC} - \delta_{AB} \]

When you have only study level data:
“Aggregate level matching” - network
When you have only study level data:
“Reference prediction”

Exchangeable effects regarding reference treatment
When you have individual patient data:
Population-Adjusted Indirect Comparison (2 Trials)

- Propensity score-based methods (matched adjusted indirect comparison)
- Outcome regression-based methods (simulated-treatment comparison)
Disconnected network with multiple RCTs and a single-arm IPD trial

1. Identify “best matching” trial or trials in network with the single-arm IPD trial
2. Adjust for differences between single-arm trial and “best matching” network trial regarding prognostic factors and effect modifiers
3. “Network” meta-analysis of all relevant studies in network including the “connected-trial”

Summary

- The desire to make novel treatments available to patients as soon as possible has led to a growing number of clinical trials that pose challenges to understand the comparative and cost-effectiveness of the intervention of interest
- Indirect comparisons involving single-arm trials rely on the assumption of no systematic differences in effect modifiers and prognostic factors between studies
- Access to patient-level data for one of the trials to adjust for between-trial differences may make this (strong) assumption easier to defend