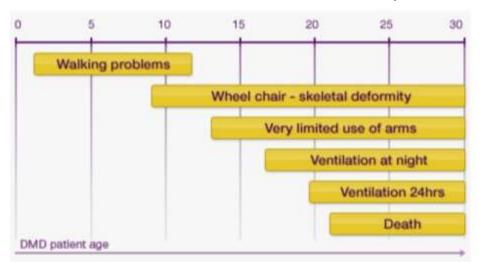
# Ambulatory function in Duchenne muscular dystrophy

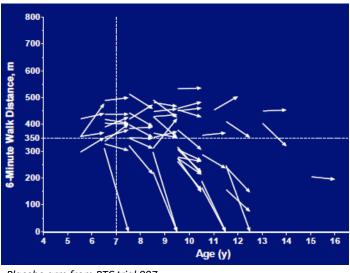

# The characteristic trajectory and variation across individuals

James Signorovitch, Francesco Muntoni, Gautam Sajeev, Zhiwen Yao, Susan J. Ward, and Keith R. Abrams





**Duchene muscular dystrophy:** progressive muscle wasting leads to weakness, loss of motor function and early death






cTAP confidential



## Heterogeneity in rates of disease progression -- a challenge for drug development





Placebo arm from PTC trial 007



## The Collaborative Trajectory Analysis Project





#### **Mission**

- · Learn from patient data to inform all stages of Duchenne drug development
- · Make insights and tools available to everyone
- Deliver near-term impact



cTAP confidential

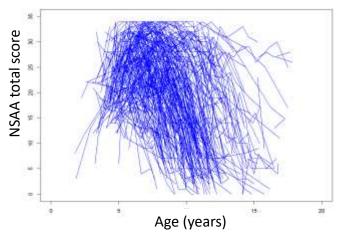


## Research objectives discussed today

- Describe common patterns of disease progression
- Quantify variation across individuals
- Explore relationships across different functional measures





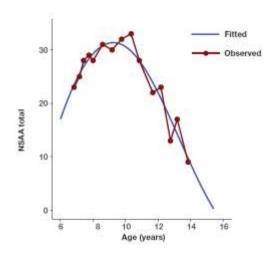

#### **Data**

#### **Patients**

- NorthStar UK Clinical Network database
- 323 boys
- 2,007 assessments
- 3.3 yrs median follow-up

#### North Star Ambulatory Assessment (NSAA)

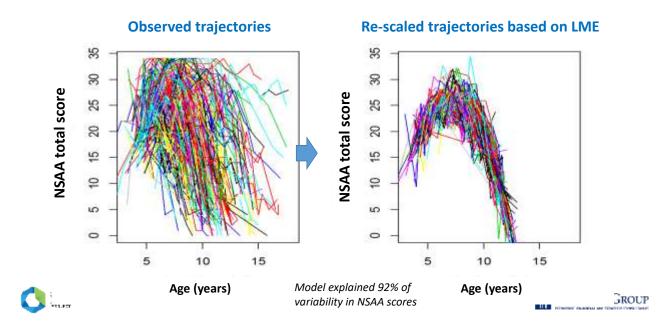
(17 items scores 0,1 or 2; e.g., walk, run, jump, climb step...)





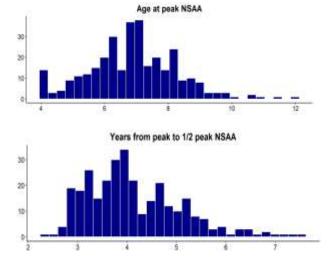



#### **Methods**


- Linear mixed effects (LME) models
  - · Function vs. age
  - · Patient-specific random splines
  - Autocorrelation
- Superimposition by Translation and Rotation (SITAR)
  - Parameterize characteristic trajectory (spline)
  - Model individual variation as transformations of the time scale (shift + velocity) as well as vertical translation of the outcome scale








## Results - NSAA total score



## Results - NSAA total score

| Feature                        | Median<br>(IQR)     |
|--------------------------------|---------------------|
| Age at peak function (years)   | 6.8<br>(5.9 to 7.8) |
| Years from peak<br>to 50% loss | 4.0<br>(3.6 to 4.6) |





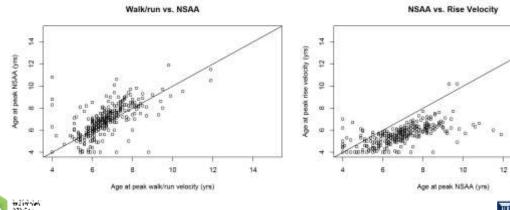


## Relationships between features

#### **Pearson correlations**

|                   | Age at<br>peak | Years to 50% loss | Height of peak |
|-------------------|----------------|-------------------|----------------|
| Age at peak       |                | 0.60              | 0.30           |
| Years to 50% loss | 0.60           |                   | 0.06           |
| Height of peak    | 0.30           | 0.06              |                |

- Later age at peak is associated with slower subsequent progression
- Later age at peak is modestly associated with higher peak function
- Height of peak is not strongly associated with the rate of subsequent decline






cTAP confidential

## **Associations across measures**

- Age at peak NSAA and age at peak 10 meter walk/run speed were <u>similar</u>
- Age at peak rise from floor speed was <u>earlier</u> by 1.3 (0.7 to 1.8) years compared with peak NSAA





#### **Conclusions**

- Despite variability across individuals, ambulatory progression in DMD follows common patterns
- The large majority of cross-patient variation in progression can be explained by differences in age at peak function, peak level achieved and subsequent rates of decline
- Different functional abilities peak at different ages, but with a predictable ordering, suggesting that they reflect different aspects of a consistent underlying disease process
- The SITAR approach was appealing but faced convergence issues in these data; Bayesian versions of SITAR are of interest
- Characterization of progression can help inform the design and interpretation of clinical studies (e.g., by enrichment for certain disease stages), and serve as a reference point for further research in DMD disease modeling





#### **Acknowledgments and disclosures**

- DMD patients and families for participating and agreeing to make their data available for research
- Investigators and staff from the North Star UK network
- Members of cTAP for contributions to the conceptualization and interpretation of this research
- cTAP has received sponsorship from:
  - Astellas (Mitobridge), BioMarin, Bristol Meyers Squibb, Catabasis, Italfarmaco, Marathon Pharmaceuticals, Pfizer, PTC Therapeutics, Roche, Sarepta Therapeutics, Shire, Solid Biosciences, Summit Therapeutics and Wave Life Sciences
  - Parent Project Muscular Dystrophy, Charley's Fund, and CureDuchenne, a founding patient advocacy partner and provider of initial seed funding to cTAP





## **Extra slides**

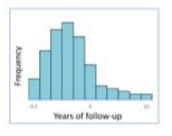




## Data accessed by cTAP

>2,500 boys

>16,000 clinic visits


>5,000 patient-years



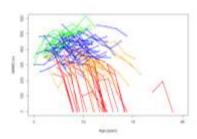


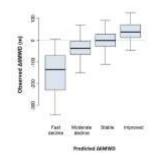


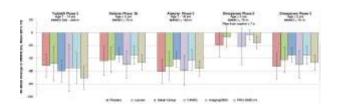


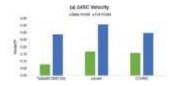


DISEASE PROGRESSION





cTAP confidential





#### Other cTAP research

- Trajectories of change in clinical endpoints
- Consistency between real-world and clinical trial settings
- Prognostic models
- Minimal clinically important differences in endpoints











