Accounting for treatment switching/discontinuation in comparative effectiveness studies

Melvin ‘Skip’ Olson, PhD
Global Head, Real World Data Strategy and Innovation
ISPOR 2018
November 14, 2018

Novartis disclaimer

- These slides are based on publicly available information (including data relating to non-Novartis products or approaches)
- The views presented are the views of the presenter, not necessarily those of Novartis
- These slides are intended for educational purposes only and for the personal use of the audience. These slides are not intended for wider distribution outside the intended purpose without speaker approval
- The content of this slide deck is accurate to the best of the presenter’s knowledge at the time of production
Treatment switching can cause bias in estimates of treatment effects in observational studies

- Standard ITT/initiated treatment analysis doesn’t answer the question we’re interested in
- To answer the decision problem, we need to estimate (model) what would have happened if there had been no switching

PFS, Progression-free survival; PPS, Post-progression survival; OS, Overall survival

Inadequate methods used to account for treatment switching

- Unadjusted regression models (ITT approach): assume that treatment switching occurs randomly; only adjust for baseline confounders
- Models that exclude and censor switchers: assume that there are no confounders that affect both the reason for switching and the treatment outcome
- Models with time-varying covariates with simple regression: assume that switching is not affected by prior treatment levels while affecting the outcome

Proposed methods to account for treatment switching

- Marginal structural models with inverse probability of censoring weights
 - Switchers are censored from the analysis; non-switchers are given larger weights than switchers with similar histories

- Structural nested failure time models with g-estimation, -formula, or -computation
 - Produce an unbiased estimate of treatment effects on outcomes in studies with treatment switching
 - Construct a pseudo-population to hypothesize the outcome of switchers if they had not switched to an alternative treatment

The Target Trial approach

- Framework for analyzing observational data to facilitate appropriate adjustments to be made for treatment switching/discontinuation
- The approach comprises seven key components relating to data collection and analysis

This will be covered in more detail later in the workshop…

Literature review of methods used

- Eligible studies:
 - Non-interventional studies comparing the effectiveness of at least two products
 - Title/abstract included mention of treatment switching/discontinuation
 - Published from 1 January 2016
- Eligible studies were identified using PubMed/MEDLINE

PRISMA diagram presenting the selection of eligible studies
Most articles were excluded during abstract review owing to switching/discontinuation not being mentioned in the title/abstract

Most studies identified did not account for treatment switching/discontinuation

- Of the 17 studies, only one included sensitivity analyses to account for switching/discontinuation:
 - Most studies employed an ITT approach, assuming that switching/discontinuation occurs randomly and therefore can be ignored
 - One study compared the outcomes of ‘early switchers’ to a treatment with patients who received that treatment alone

Method used to account for treatment switching/discontinuation, n = 17
ITT, n = 14
Sensitivity analyses to account for issue, n = 1
Substudy of ‘early switchers’, n = 1
Completer vs disconter, n = 1

Global Medical Affairs | RWD and Digital
7 Business Use Only
Case study: Choy et al. 2017

- Study comparing the clinical effectiveness of tocilizumab and tumor necrosis factor inhibitors in patients with rheumatoid arthritis who have not responded to conventional synthetic DMARDs

- Sensitivity analyses used to confirm results of primary effectiveness analysis
 - Multiple imputation model used to account for treatment switching/discontinuation
 - Propensity scores calculated using multiple logistic regression with covariates including:
 - Stopped previous treatment (owing to lack of efficacy)
 - Stopped previous treatment (owing to intolerance)

DMARD, disease-modifying antirheumatic drug

Widespread adoption of effective methods is warranted

Unadjusted regression models
Excluding/censoring switchers
Time-varying covariates w/simple reg
Marginal structural models
Structural nested failure time models w/g-estimation
Target Trial approach
Thank you