Using weighted criteria for making reimbursement decisions for off-patent pharmaceuticals in China, Thailand and Vietnam

- Introduction of Faculty, Agenda

 D. Brixner

- Use of weighted criteria for decision making for generics

 D. Brixner

- Implementation of multi-criteria decision process for tender decisions in Beijing (China)

 SL Hu

- Analysis of using MC in pharmaceutical price setting (China)

 SL Hu

- Decisions for the Essential Drug List (Thailand)

 S Ngorsuraches

- Quality of pharmaceutical products and the classification of products for tender (Vietnam)

 J. Shen

- Discussion

 D. Brixner
Agenda

• Introduction of Faculty, Agenda D. Brixner
• Issues with current approach to decision making D. Brixner
• Proposing decision criteria

Diana Brixner, PhD, RPh
Professor and Chair, Department of Pharmacotherapy
Executive Director Outcomes Research Center
College of Pharmacy

Director of Outcomes
Personalized Health Care Program. University of Utah

diana.brixner@utah.edu

Use of weighted criteria for decision making for generics

• Making value decisions in branded vs. generic drugs
• Proposed weighted criteria to assist in these decisions
• Examples of weighted criteria
 – Bioavailability
 – Outcomes evidence
 – Quality control
 – Drug shortage prevention
• Policy implications
Should price be the only criterion when making therapeutic decisions for the majority of patients?

- Including all off-patent products, it can be assumed, that over 80% of patients are treated with off-patent drugs (Originators, Branded Generics, INN Generics)
- After patent loss, decisions are increasingly based on price

INN = International Non-proprietary Name

Economical value of generic drugs (or drug policies?)

R&D costs
- product quality (e.g., GMP)
- stringent bioequivalence criteria
- value in use
- clinical outcomes
- additional non-drug costs

Kaló Z et al. submitted to Value in Health 2014
Multiple criteria to be considered when deciding on off-patent medicines

1. Proof of pharmaceutic equivalence
2. Proof of bio-equivalence
3. Differences in formulations, excipients and process technology
4. Effect on patient adherence
5. GMP (Good Manufacturing Practice) and Quality standard
6. Supply reliability
7. Added value (e.g. Disease/ patient educational services, disease outcome solutions)
8. Stakeholder partnership (e.g. Public-private-partnership on local health care infrastructure and expertise build-up)
9. Local investment (e.g. manufacturing, R&D, employment)
10. Other according to local policy priorities (work conditions & benefits, environmental standards etc.)

International Definitions of a „Generic Drug“

...“is a pharmaceutical product, usually intended to be interchangeable with an innovator product, that is manufactured without a license from the innovator company and marketed after the expiry date of the patent or other exclusive rights.”

...is the same as a brand name drug in dosage, safety, strength, how it is taken, quality, performance, and intended use.

„A medicinal product which has the same qualitative and quantitative composition in active substances and the same pharmaceutical form as the reference medicinal product, and whose bioequivalence with the reference medicinal product has been demonstrated by appropriate bioavailability studies“

* Alfonso et al. – submitted to AHEHP; Alfonso et al, ISPOR 2013 Buenos Aires
Interchangeability? Different Equivalence Tests

Large scale clinical efficacy & safety trial

Therapeutic equivalence (TE)

Phase II clinical trial
Phase III clinical trial
Phase IV study

Bio-equivalence (BE)

Phase I clinical trial

Pharmacological equivalence (PE)

Healthy volunteer tests
In vitro test

API, dosage form, consistency

Gx = 80-125% of Reference

• (WHO 2006)

Should bio-equivalence study be exempted?

Bio-equivalence studies can be waived for immediate release oral dosage forms with high solubility and high permeability (BCS Class I with ≥90% BA).

Permeability

High
Low

Solubility

High
Low

I
II
III
IV

Biopharmaceutics Classification System (BCS)

Bio-equivalence (BE)

Pharmacological equivalence (PE)

Pharmacokinetics
Pharmacodynamics
Healthy volunteer tests
In vitro test

Gx = 80-125% of Reference

Limited evidence on the impact of generics policies

A Systematic Review

The Impact of Generic Substitution on Health Outcomes and Costs

Imke Schall, Bakk, Diana Brixner, RPh, PhD
Kim Saverno, PhD, RPh, Martina Mitrovic, Mag., Agnes Luzak, MPH, Holger Gothe, MD, Uwe Siebert, MD, MPH, MSc, ScD.
Institute of Public Health, Medical Decision Making and Health Technology Assessment; Department of Public Health and Health Technology Assessment, UMIT – Univ. Health Sciences, Medical Informatics and Technology, Eduard Wallnoefer Center I, A-6060 Hall i.T., Austria

Systematic Review: Background and Objectives

• Generic substitution of branded drugs is often mandated by government and other health care payers in order to reduce healthcare expenditures.
• The premise of bioequivalence has not been tested against the same standards of clinical and economic outcomes as the branded counterparts.

• Tested hypotheses
 – generics and branded products yield the same health outcomes
 – generic therapies save economic resources versus branded therapies
40 Studies included

- 32 clinical outcomes only
- 3 economic outcomes only
- 4 economic AND clinical outcomes

- 14 studies on de novo patients
- 24 studies on maintenance therapy
- 2 studies relating to both

Study Countries

<table>
<thead>
<tr>
<th>Austria</th>
<th>Netherlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Philippines</td>
</tr>
<tr>
<td>Germany</td>
<td>Poland</td>
</tr>
<tr>
<td>India</td>
<td>Slovenia</td>
</tr>
<tr>
<td>Israel</td>
<td>Sweden</td>
</tr>
<tr>
<td>Japan</td>
<td>Taiwan</td>
</tr>
<tr>
<td>Korea</td>
<td>Thailand</td>
</tr>
<tr>
<td>Malaysia</td>
<td>USA</td>
</tr>
</tbody>
</table>

Therapeutic Categories

- Anti-Epileptic Drugs
- Anti-arrythmics
- Anti-coagulants
- Anti-hypercholesterolemics
- Anti-hypertensives
- Anti-psychotics
- Ocular (glaucoma)
- Immunosuppressives
- Oncology
- Osteoporosis

ISPOR 6th Asia-Pacific Conference 2014 - W 07

Systematic Review: Results

- 66% of the outcome comparisons reported similar clinical outcomes for generic and original brand drugs
 - Hypothesis 1 (similar clinical outcomes) was largely supported

- 64% suggested that brand products had lower costs compared to generic substitution.
 - Hypothesis 2 (generic drugs save money) was largely rejected.
Importance of Quality Assurance and Quality Control

- Detailed knowledge of the product and processes are essential.
- Throughout the entire product development
- All contribute to the overall product quality

ISPOR 6th Asia-Pacific Conference 2014 - W 07
Generic substitution of narrow therapeutic index drugs can have unintended consequences. Generic switching is often driven by cost incentives, regulations and supply, but may raise concerns about:

- equal bioavailability
- therapeutic equivalence and about possible
- confusion for the patient

Warfarin was associated with poorer outcomes when switching occurred and that the US and Germany both have policies to purchase the least expensive generic on a periodic basis.

Reality of Many Current Drug Policies

Policies are usually driven by short-term objectives
- Budget Constraint
- ‘The next election’ syndrome
- Short term incentives

RISK: not always aligned to HC objectives, current knowledge and societal values

Process for Designing Drug Policies

Policies should be directed to long-term HC goals while accounting for mid- and short term constraints

Define Target Outcomes Criteria

Test Policy for ability to reach HC objectives by testing impact on target outcomes
Using weighted criteria for making reimbursement decisions for off-patent pharmaceuticals in China, Thailand and Vietnam

- Introduction of Faculty, Agenda
 D. Brixner
- Use of weighted criteria for decision making for generics
 D. Brixner
- Implementation of multi-criteria decision process for tender decisions in Beijing (China)
 SL Hu
- Analysis of using MC in pharmaceutical price setting (China)
 SL Hu
- Decisions for the Essential Drug List (Thailand)
 S Ngorsuraches

Shanlian Hu, MD, MSc,
Professor of Health Economics, School of Public Health, Fudan University,
Director, Center for Health Development Research,
Shanghai Bureau of Health, Shanghai, China

2014-2016 Chair, ISPOR Asia Consortium Health Technology Assessment Agencies,
Health Care Policymakers & Payers (HTA & Policymakers) Committee

MC for tender decisions in Beijing (China)
The issue and objective

- Current tendering systems only consider drug prices rather than the quality
 - price lower than the production cost; finally
 - manufacturer unable to produce drugs; will be out of stock
- There are no standardized bidding procedures, such as the separation of bidding between essential medicines and non-essential medicines,
 - the bidding is not related with purchasing
 - the price of procurement is not linked to volume
- What is the rational relative importance of economic & technical indicators (quality) and commercial indicators (price)?
- The objective is to summerize the experience of tender decisions in Beijing and other provinces in China
MC for tender decisions in Beijing (China)
The political process - why a MC process?

- All reformed public hospitals will eliminate the drug mark-up, drug sale will no longer be as a part of hospital revenue
- The drug procurement in all hospitals will go through provincial bidding platform, i.e., conducting integration between bidding & purchasing, volume-based pricing and “two envelope system”
- Classified management: Low price drugs, exclusivity drugs, special drugs and price competition drugs
 - On-Patent / originals
 - Off-patent drugs
 - Individual pricing drugs
 - High quality products (premium price)
 - National innovative drug
 - Confidential traditional Chinese medicines*
 - Drugs passing the new GMP criteria
 - With FDA or EMA certification
- Stratified bidding by drug quality uses multiple criteria

* non-disclosure of the components (ingredients)

ISPOR 6th Asia-Pacific Conference 2014 - W 07

MC for tender decisions in Beijing (China)
The MC process and the weighting

BJ Tender Criteria Transformation

<table>
<thead>
<tr>
<th>Evaluation Item</th>
<th>Scoring</th>
<th>Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer Size (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Quality Assurance (GMP)</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>2. Company Rankings in China (per MIIT)</td>
<td>10</td>
<td>10.0</td>
</tr>
<tr>
<td>3. Annual Turnover (Revenue V.A.T)</td>
<td>15</td>
<td>15.0</td>
</tr>
<tr>
<td>4. Innovation (as recognized in China)</td>
<td>12</td>
<td>12.0</td>
</tr>
<tr>
<td>5. Local investment and contribution</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>6. Corporate Brand (Subjective scores)</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Product Quality (50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Quality Specification</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>8. Differential Pricing (per NDRC)</td>
<td>10</td>
<td>10.0</td>
</tr>
<tr>
<td>9. Product line/formulation quality control (GMP)</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>10. Tender winning record</td>
<td>10</td>
<td>10.0</td>
</tr>
<tr>
<td>11. API Quality Control (GMP)</td>
<td>2</td>
<td>2.0</td>
</tr>
<tr>
<td>12. Output Ranking (per MIIT)</td>
<td>10</td>
<td>10.0</td>
</tr>
<tr>
<td>13. Electronic Monitoring</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>14. Product Reputation (Subjective scores)</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Additional Point (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Bad Records of Quality (Negative)</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Subjective Scores will be determined by KOLs
MC for tender decisions in Beijing (China)
Implementation of the MC process

Improved Beijing Tender Model

A
Quality (100)
• Company size
• Market share
• GMP certification
• Local investment
• Reputation – no bad record
• Ability in electronic tracking

B
Price (30)
• Price competition
• Price ranking based on low to high

C=A+B
Combination
• Two of them have the highest rankings from combined measures
• Won by lowest price

• Advanced the Integration in evaluation of quality and price
• Successfully added quality criteria in the weight of tender evaluation, i.e. quality takes up 100 scores while price takes up 30
• Overturned the lowest-price-winning-only model, and secured the top 2 in weighted evaluation to be the winner

ISPOR 6th Asia-Pacific Conference 2014 - W 07

MC for tender decisions in Beijing (China)
Experiences

• Integrated bidding system for both essential and non-essential medicines, hospital and grassroots health centers
• Establishing rational multiple criteria in bidding system: economic & technical criteria (60% of scoring), commercial criteria (40% of scoring)
• Reducing the mark-up rate in distribution process (3%-5% of total value of procurement) and only allow to issue two financial receipts (1.) distributor pay to manufacturer, 2.) hospital pay to distributor
• Further price negotiation with hospital, third party, or government after bidding
• On-line bulk purchasing is the main manner for all drugs passed the economic and technical criteria, government encourages price competition between manufacturers

ISPOR 6th Asia-Pacific Conference 2014 - W 07
Shanlian Hu, MD, MSc,
Professor of Health Economics, School of Public Health, Fudan University,
Director, Center for Health Development Research, Shanghai Bureau of Health, Shanghai, China

2014-2016 Chair, ISPOR Asia Consortium Health Technology Assessment Agencies, Health Care Policymakers & Payers (HTA & Policymakers) Committee

MC in pharmaceutical price setting (China)
The issue and objective

- Before the new Drug Registration Regulation was enacted in 2007, SFDA granted 188,200 approval certifications for about 110,000 chemical medicines. The manufacturers only competed on price
- The generics stayed on imitation mode rather than prioritizing product quality and consistency
- China SFDA testing results showed a gap in quality between generic and originals drugs; the low quality of generic drugs has posed a threat to the safety of the public
MC in pharmaceutical price setting (China)
The political process - why a MC process?

- For Chinese generic products which have shown not to be significantly different from the originators in the quality consistency evaluation, the price gap to the originator products will be reduced
- The MC process allows for value based pricing
- In addition, NDRC will operate a reference pricing system which defines the reimbursement level; if the price is higher than the reference price, patients will pay the difference

MC in pharmaceutical price setting (China)
The MC process and the weighting

- Conceptualization:
 - In November 2013, an international group of health economist and health policy experts in the pharmaceutical field came together to develop a method of using MCDA for evaluating policies for off-patent originators and generic products

- Implementation in China:
 - Subsequently, 11 well-known academic experts and 7 pharmaceutical senior executives were interviewed in the MCDA survey in China

| Determined the relative importance (weight 1-10) of each of 10 pre-defined attributes | Scored the impact of each of 3 alternative policies on each attribute (1-5) | Calculated the MCDA estimates (0-1) for each policy alternative | Result: optimal pricing policy for achieving objectives of the Chinese stakeholders |

ISPOR 6th Asia-Pacific Conference 2014 - W 07
The Combined Scores of Each Attribute in Different Interview Group

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Academia group</th>
<th>Pharma group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pharmaceutical equivalence</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>2 Bio-equivalence</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>3 Pharmaceutical enterprise pass 2010 Chinese version of GMP</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>4 Clinical efficacy and effectiveness.</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>5 Drug safety</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>6 Patients adherence to therapy</td>
<td>0.10</td>
<td>0.09</td>
</tr>
<tr>
<td>7 Different excipients, production process and technology, shelf-life</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>8 Order of entry in the market</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>9 Supply reliability</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>10 Manufacturer Investment</td>
<td>0.06</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Groups

- Academia: 0.72 0.70 0.62
- Pharma: 0.72 0.69 0.67

- The pharmaceutical equivalence consistency test for generics has been conducted by SFDA since 2012
- NDRC has proposed clinical value-based pricing in 2013, and will considered pilot study of reference (benchmark) pricing in 2014
MC in pharmaceutical price setting (China)
Experiences

- The drug pricing system in China will be improved:
 - cost-based pricing plus price competition (supply and demand)
- Low price drug management will be based on market mechanism: the price will be set by manufacturer, manufacturers compete on price, but the government controls the maximum retail price
- China will introduce an international reference price system to reduce the price gap between China and other countries (for innovative drugs)
- Using price incentives as a tool to promote innovation and drug quality
- Establishing objective multiple criteria indicators to establish a price accreditation system
- In the future,
 - government will control the drug price directly
 - third party* control of medical expenditures and
 - market arbitrage of the price

ISPOR 6th Asia-Pacific Conference 2014 - W 07

* Payers such as insurance companies

Using weighted criteria for making reimbursement decisions for off-patent pharmaceuticals in China, Thailand and Vietnam

- Introduction of Faculty, Agenda
 D. Brixner
- Use of weighted criteria for decision making for generics
 D. Brixner
- Implementation of multi-criteria decision process for tender decisions in Beijing (China)
 SL Hu
- Analysis of using MC in pharmaceutical price setting (China)
 SL Hu
- Decisions for the Essential Drug List (Thailand)
 S Ngorsuraches
 - Quality of pharmaceutical products and the classification of products for tender in Vietnam
 J. Shen
 - Discussion
 D. Brixner

Surachat Ngorsuraches, PhD,
Associate Professor, Faculty of Pharmaceutical Sciences,
Prince of Songkla University, Songkhla, Thailand

2012-2014 Chair, ISPOR Asia Consortium Executive Committee
Decisions for the Essential Drug List (Thailand)
The issue and objective

- National List of Essential Medicines (NLEMs): rationale drug use & reimbursement list

- ISafE score: I = information; S = safety; af = administration restriction score & frequency of drug administration score; E = efficacy

- ISafE score: good if closer to 1 & out if less than 50th percentile

- Objective: to assess benefits and risks of statins by MCDA (Wanishayakorn T, a PhD student)

Decisions for the Essential Drug List (Thailand)
The political process - why a MC process?

- Primarily, policy makers (e.g. payers) and clinical experts are involved in the NLEM listing process.

- Key committee:
 – 20 therapeutic groups of experts
 – economic experts
 – Consolidating committee

- Why MCDA?
 – A tool that complements ISafE score
 – More involvements e.g. patient groups, practitioners
Decisions for the Essential Drug List (Thailand)

The MC process and the weighting

• Identify benefits & risks
 – Literature review, Patients/experts/PTC interviews
 – Stroke, MI, Myalgia, Liver toxic

• Weighting
 – Swing weight in 6 patient grs/ 6 expert grs/ 10 policy maker grs
 – Discrete choice experiment (DCE): multinomial logit model

• Scoring/Ranking

• Sensitivity analysis

Decisions for the Essential Drug List (Thailand)

Implementation of the MC process

<table>
<thead>
<tr>
<th></th>
<th>Weighting methods</th>
<th>Atorva statin</th>
<th>Fluva statin</th>
<th>Lova statin</th>
<th>Prava statin</th>
<th>Rosuva statin</th>
<th>Simva statin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient (N = 24)</td>
<td>SW</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Patient (N = 223)</td>
<td>DCE</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Expert (N = 24)</td>
<td>SW</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Expert (N = 63)</td>
<td>DCE</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Policy maker (N = 40)</td>
<td>SW</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Policy maker (N = 67)</td>
<td>DCE</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Overall (N = 84)</td>
<td>SW</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Overall (N = 353)</td>
<td>DCE</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
Decisions for the Essential Drug List (Thailand)
Experiences

- An introduction of MCDA to health care decision making
- For MCDA, time is not an issue, but discretion, trust and power are
- Comfortable with existing tool e.g. ISafE, economic evaluation, BIA
- Need more examples, more criteria
- Patients know what they want. Let them share decisions.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Registration</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Safety: SE, ADR</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Safety: equivalence, excip & tech, GMP</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Patient adherence</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>QoL</td>
<td></td>
<td>(Yes)</td>
</tr>
<tr>
<td>Cost</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Supply reliability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added value e.g. pt edu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeholder partnership</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local investment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decisions for the Essential Drug List (Thailand)
Future for off-patent pharmaceuticals

Perspective
- Patients
- Providers
- Policy makers/Payers
Great Title for the Slide

Using weighted criteria for making reimbursement decisions for off-patent pharmaceuticals in China, Thailand and Vietnam

- Introduction of Faculty, Agenda
- Use of weighted criteria for decision making for generics
- Implementation of multi-criteria decision process for tender decisions in Beijing (China)
- Analysis of using MC in pharmaceutical price setting (China)
- Decisions for the Essential Drug List (Thailand)

- Quality of pharmaceutical products and the classification of products for tender in Vietnam
- Discussion

Jie Shen
Head of Market Access, Emerging Markets
Abbott, Basel, Switzerland

Quality = Degree of Excellence

- Explained by
 - Components contributing to Quality
 - Ways of measuring Quality
 - Methods used to improve Quality

- Quality is NOT about the Standard of goods coming out of factory

- In the pharmaceutical industry, Quality needs to be built into the entire process from Product Development to Manufacturing and Post Marketing follow up
Why Quality is important

- Purpose of healthcare interventions is to improve the health status
- Any unpredicted event such as adverse events or drug shortage due to defective products may harm patients and damage healthcare
- Predictability in the drug development and manufacturing is closely linked to a thorough and fact-based understanding and management of the entire manufacturing process including
 - Ingredient supply
 - Cost of goods sold
 - Inventory level
 - Ingredient quality
 - Technology development
 - Regulatory compliance
- Quality assurance delivers these integrated measures throughout the entire production process
- Quality control ensures that the output of the process reached the pre-defined specifications

Regulatory agency guidance on Quality

- Quality is built into pharmaceutical products (FDA, 2004) through a comprehensive understanding of
 - The intended therapeutic objectives; patient population; route of administration; and pharmacological, toxicological, and pharmacokinetic characteristics of a drug
 - The chemical, physical, and biopharmaceutical characteristics of a drug
 - Design of a product and selection of product components and packaging based on drug attributes listed above
 - The design of manufacturing processes using principles of engineering, material science, and quality assurance to ensure acceptable and reproducible product quality and performance throughout a product life cycle
Quality management method

<table>
<thead>
<tr>
<th>Concept</th>
<th>Customer / utility driven quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection for quality after production</td>
<td>Empowerment: Common goal and responsibility. Differentiation between critical and non-critical process components and specifications.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leadership</th>
<th>Hierarchical Top-Down</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Focus</th>
<th>Discard inferior quality</th>
<th>Prevent inferior quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling</td>
<td>Organizational quality</td>
<td>Build quality into process. Identify and correct causes of quality problems. Benchmarking.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approach</th>
<th>Inspection</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Methods</th>
<th>Control & Elimination</th>
</tr>
</thead>
</table>

Quality by Design (QbD)

- QbD is a concept applied to the design, development and manufacturing of biopharmaceutical molecules that entails building quality into the process and product in a systematic, science- and risk-based manner (FDA 2006, 2007; ICH 2009)
Process analytical technology (PAT)

- PAT is internationally defined as “a system for designing, analyzing and controlling manufacturing through timely measurements of critical quality and performance attributes of raw and in-process materials and processes, with the goal of ensuring final product quality (EMA, FDA 2004, 2013)
- The goal of PAT is to design and develop processes that can consistently ensure a predefined quality at the end of the manufacturing process. The types of tools used in a PAT framework are categorized as:
 - Multivariate data acquisition and analysis tools
 - Modern process analyzers or process analytical chemistry tools
 - Process and endpoint monitoring and control tools
 - Continuous improvement and knowledge management tools

Good Manufacturing Practices (GMP)

All existing guidelines have shared basic principles:

- **Clear definition and control of manufacturing processes.** Validation of all critical processes to ensure consistency and compliance with specifications.
- **Any changes to the process are evaluated and validated if they have an impact on the quality of the drug.**
- **Instructions and procedures are written in clear and unambiguous language.** (Good Documentation Practices)
- **Operators are trained** to carry out and document procedures.
- **Manual or electronic records** are made during manufacture to demonstrate that all the steps were taken which were required by the defined procedures and instructions and that the quantity and quality of the drug was as expected. Deviations are investigated and documented.
- **Records of manufacture (including distribution)** that enable the complete history of a batch to be traced are retained in a comprehensible and accessible form.
- **The distribution** of the drugs minimizes any risk to their quality.
- **A system for recalling** any batch of drug from sale or supply is available.
- **Complaints about marketed drugs** are examined, the causes of quality defects are investigated, and appropriate measures are taken with respect to the defective drugs and to prevent recurrence.
Good Distribution Practices

- Typical components of Good Distribution Practices (WHO example)

Cost and Value of Quality

«The bitterness of Poor Quality remains long after the sweetness of low price is forgotten»

--- Ben Franklin ---

Investment is necessary
- Policy makers need to set quality expectations and control the performance of all suppliers
- Manufacturers need to invest in the processes, the training, the management systems, and the certification fees
- Payers and patients need to be prepared to pay higher acquisition costs for Quality

Ignoring quality will incur costs
- Manufacturer will pay for producing scrap with material costs, wasted labor or litigation costs
- Healthcare systems will pay for the increased usage of healthcare due to low quality products and their negative impact
- Patients will pay with their personal health
Example: The use of quality to categorize off-patent pharmaceutical products in Vietnam

Products with a compound patent issued by one of the following patent offices:
- Austria
- Australia
- Brazil
- Canada
- China
- EU
- Finland
- France
- Greece
- India
- Indonesia
- Ireland
- Israel
- Japan
- Korea
- Russia
- Sweden
- US
- Germany
- UK

* Imported product with EU/GMP or PIC/s-GMP standard and also belong to ICH countries.
* Locally made drugs with WHO-GMP and are licensed in ICH countries (EU, Japan, US and ICH inspectors)

** PIC: The Pharmaceutical Inspection Convention**
** ICH: The International Conference on Harmonisation. ICH thus represents 17 countries comprising 15% of the world’s population and accounting for 90% of the US$ 320 billion global pharmaceutical sales of the year 2000**

ISPOR 6th Asia-Pacific Conference 2014 - W 07

Using weighted criteria for making reimbursement decisions for off-patent pharmaceuticals in China, Thailand and Vietnam

- Introduction of Faculty, Agenda
 D. Brixner
- Use of weighted criteria for decision making for generics
 D. Brixner
- Implementation of multi-criteria decision process for tender decisions in Beijing (China)
 SL Hu
- Analysis of using MC in pharmaceutical price setting (China)
 SL Hu
- Decisions for the Essential Drug List (Thailand)
 S Ngorsuraches
- Quality of pharmaceutical products and the classification of products for tender in Vietnam
 J. Shen

- Discussion
 D. Brixner

ISPOR 6th Asia-Pacific Conference 2014 - W 07
Do any of you (audience or on panel) have examples of how some, or any one of the criteria mentioned have been used in generic purchasing decisions?

1. Proof of pharmaceutic equivalence
2. Proof of bio-equivalence
3. Differences in formulations, excipients and process technology
4. Effect on patient adherence
5. GMP (Good Manufacturing Practice) and Quality standard
6. Supply reliability
7. Added value (e.g. patient educational services, outcomes solutions)
8. Stakeholder partnership (e.g. Public-private-partnership)
9. Local investment (e.g. manufacturing, R&D, employment)
10. Other according to local policy priorities (work conditions & benefits, environmental standards etc.)

What are risks associated with only considering cost in purchasing generics? Do any of you, in audience or panel, have any examples of risk?

- Quality issues
- Lack of bioavailability
- Safety issues - Adverse events
- Lower adherence
- Too frequent switching
- Drug shortages
- Reduced willingness to invest
- Disadvantage of local industry
- OTHERS?
Who should sit on the table when making pricing, coverage or purchasing decisions?

- Purchasers
- Ministry of Trade
- HTA Agency
- Ministry of health
- Health economists
- Patient advocates
- Providers

How can success of off-patent policies be measured?