Harnessing Real-World Data (RWD) for and from \textit{in vitro} Diagnostics (IVDs)

Michael Waters, Ph.D.

\textit{SHIELD Team Lead/OIR RWE Representative}

Office of In Vitro Diagnostics and Radiological Health (OIR)
Center for Devices and Radiologic Health (CDRH)
Food and Drug Administration (FDA)

\textit{ISPOR – Baltimore, MD 5/23/2018}
Context for RWE Guidance

- FDA Reauthorization Act (FDARA) including MDUFA IV commitment to use of real-world evidence to support device pre/postmarket decisions
- National Evaluation System for health Technology (NEST)
- 2016-2017 CDRH Strategic Priorities
- Guidance issued to clarify how RWE may be used to support regulatory decisions
Context for RWE Guidance

- FDA Reauthorization Act (FDARA) including MDUFA IV commitment to use of real-world evidence to support device pre/postmarket decisions
- National Evaluation System for health Technology (NEST)
- 2016-2017 CDRH Strategic Priorities
- Guidance issued to clarify how RWE may be used to support regulatory decisions
What IVDs Do?

• *In vitro* diagnostics (IVDs) products are... intended for use in diagnosis of disease or other conditions...

 [21 CFR 809.3]

• Fundamentally, IVDs ‘ask’ a question of a specimen taken from a human body.

• The result that follows is the ‘answer’ to that question.

• Each individual device is ‘who’s asking.’
Some Nuances Unique to IVDs

- Labs operate under the Clinical Laboratory Improvement Amendments (CLIA) regulations.
- CMS oversees labs through the College of American Pathologists (CAP) lab accreditation program Labs regularly conduct proficiency testing of CAP panels and submit results to CAP (*for most tests*).
- Labs conform to Good Laboratory Practices (GLP) (*21 CFR 58 & 42 CFR 493*).
- Labs have to validate off-label use and Laboratory Developed Tests (LDTs).
Evidence for Regulatory Decisions

Traditional Regulatory Pathway

Primary purpose of information collection is for research activity – generate Clinical Evidence

Pre-Clinical Testing \(\rightarrow\) (IDE) \(\rightarrow\) Clinical Studies \(\rightarrow\) Pre-Market Application \(\rightarrow\) Post-Market

New Hypotheses Device Innovation
Evidence for Regulatory Decisions

Traditional Regulatory Pathway

Primary purpose of information collection is for research activity – generate Clinical Evidence

Pre-Clinical Testing → (IDE) → Clinical Studies → Pre-Market Application → Post-Market

New Hypotheses
Device Innovation

Informed Clinical Decision Making

Real-World Device Use
Physician and Patient Experience

Healthcare Information

- Claims Databases
- Pharmacy Data
- Social Media
- Laboratory Tests
- Patient Experience
- Registries
- Electronic Health Records
- Hospital Visits

Real-World Data/Evidence
Retrospective Analysis

Design → Conduct → Analysis

Pre-Clinical Testing (IDE) → Clinical Studies → Pre-Market Application → Post-Market

New Hypotheses
Device Innovation

Informed Clinical Decision Making

Real-World Device Use
Physician and Patient Experience

Healthcare Information

- Claims Databases
- Pharmacy Data
- Social Media
- Electronic Health Records
- Laboratory Tests
- Patient Experience
- Registries
- Hospital Visits

Analysis ← Selection ← Data Generation
Data Quality

‘Fit for Purpose’
Data must be complete, consistent, accurate, and contain all critical data elements needed to evaluate a medical device and its claims.

Relevant & Reliable

Benefit

Risk

Safety
...probable benefits to health from use of the device outweigh any probable risks [21 CFR 860.7(d)(1)]

Effectiveness
...use of the device in the target population will provide clinically significant results [21 CFR 860.7(e)(1)]
Embedded Clinical Study

Pre-Clinical Testing → (IDE) → Clinical Studies → Pre-Market Application → Post-Market

New Hypotheses
Device Innovation

Informed Clinical Decision Making

Real-World Device Use
Physician and Patient Experience

Healthcare Information

- Claims Databases
- Pharmacy Data
- Social Media
- Electronic Health Records
- Laboratory Tests
- Patient Experience
- Registries
- Hospital Visits
- Healthcare Information

Embedded Clinical Study

Informed Clinical Decision Making

New Hypotheses
Device Innovation

Real-World Device Use
Physician and Patient Experience

Healthcare Information

- Claims Databases
- Pharmacy Data
- Social Media
- Electronic Health Records
- Laboratory Tests
- Patient Experience
- Registries
- Hospital Visits
- Healthcare Information
Patient Protections

- 21 CFR 812 Investigational Device Exemptions
- 21 CFR 50 Protection of Human Subjects (Informed Consent)
- 21 CFR 54 Financial Disclosure of Investigators
- 21 CFR 56 Institutional Review Boards (IRBs)
- 45 CFR 46 "Common Rule"
- Health Insurance Portability and Accountability Act (HIPAA)
- Other federal and local regulations

- RWE Guidance does not address all issues related to patient protection - focus is on the IDE process.
Patient Protections

Traditional Regulatory Pathway – 21 CFR 50, 54, 56, 812 Apply

Pre-Clinical Testing → (IDE) → Clinical Studies → Pre-Market Application → Post-Market

New Hypotheses

Device Innovation

Informed Clinical Decision Making

Healthcare Information

Claims Databases
Pharmacy Data
Social Media
Electronic Health Records
Laboratory Tests
Patient Experience
Registries
Hospital Visits

Real-World Device Use
Physician and Patient Experience

HIPAA Privacy Rule
Research on Information

Pre-Clinical Testing → (IDE) → Clinical Studies → Pre-Market Application → Post-Market

New Hypotheses → Device Innovation

Informed Clinical Decision Making

Healthcare Information:
- Claims Databases
- Pharmacy Data
- Social Media
- Electronic Health Records
- Laboratory Tests
- Patient Experience
- Registries
- Hospital Visits

Access and Use – Research Under Common Rule

Real-World Device Use → Physician and Patient Experience

21 CFR 50, 56
Example Case Studies

<table>
<thead>
<tr>
<th></th>
<th>Device (Submission)</th>
<th>Data Source</th>
<th>Used</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wearable (PMA/S)</td>
<td>Wearable Device & Patient Reports</td>
<td>Modification of claims from adjunctive to non-adjunctive to use diagnostic for treatment decisions</td>
<td>Indication Expansion</td>
</tr>
<tr>
<td>2</td>
<td>Computer assisted triage software (De Novo)</td>
<td>Literature</td>
<td>Peer reviewed literature Meta-analysis.</td>
<td>New Indications</td>
</tr>
<tr>
<td>3</td>
<td>Sequencing assay (510(k))</td>
<td>Public NGS database</td>
<td>Publicly-maintained database support clinical validity of the test in lieu of clinical trials</td>
<td>Indication Expansion</td>
</tr>
<tr>
<td>4</td>
<td>Screening assay (De Novo)</td>
<td>State lab & surveillance databases</td>
<td>Pivotal clinical trial was embedded in routine clinical practice (under an IDE) in lieu of a traditional pivotal trial.</td>
<td>New Indications</td>
</tr>
<tr>
<td>5</td>
<td>Implantable Cardioverter-Defibrillator (PAS)</td>
<td>Multiple RWD data sources</td>
<td>Monitor multiple aspects of real-world device safety and performance using data collected in routine care.</td>
<td>Condition of Approval</td>
</tr>
</tbody>
</table>
LOINC is used throughout electronic healthcare messaging, from ordering to reporting.

<table>
<thead>
<tr>
<th>LOINC</th>
<th>Use</th>
<th>Answer Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDI</td>
<td>who’s asking</td>
<td>UCUM values</td>
</tr>
<tr>
<td></td>
<td>question</td>
<td>SNOMED-CT codes</td>
</tr>
<tr>
<td>12345-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23456-7</td>
<td></td>
<td>UCUM values</td>
</tr>
<tr>
<td>34567-8</td>
<td></td>
<td>SNOMED-CT codes</td>
</tr>
<tr>
<td>45678-9</td>
<td></td>
<td>UCUM values</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDI</td>
<td></td>
</tr>
<tr>
<td>Device Identifier</td>
<td>123456789</td>
</tr>
<tr>
<td>Production Identifier</td>
<td>DI PI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOINC</th>
<th>Element</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Component</td>
<td>White Blood Cells</td>
</tr>
<tr>
<td></td>
<td>Property</td>
<td>Number Concentration</td>
</tr>
<tr>
<td></td>
<td>Timing</td>
<td>Point in Time</td>
</tr>
<tr>
<td></td>
<td>System</td>
<td>Cerebral Spinal Fluid</td>
</tr>
<tr>
<td></td>
<td>Scale</td>
<td>Quantitative</td>
</tr>
<tr>
<td></td>
<td>Method</td>
<td>Manual Count</td>
</tr>
</tbody>
</table>

SHIELD: Empowering Tools for Lab Data

Systemic Harmonization and Interoperability Enhancement for Lab Data
Projected Return On Investment (ROI)

GOAL: IVD Manufacturers Intend to Map and Send Codes for:

- Question (e.g., LOINC)
- Answer (e.g., SNOMED-CT)
- Who’s Asking (e.g., UDI)

Transmission (i.e., LIVD) → Clinical Information Sharing System (i.e., HL7 v2/FHIR) → Laboratory Information Systems (LIS)

RWD/RWE through TPLC
- Reliable/robust quality pre/postmarket RWD
- Access to meaningful RWE

Tracking
- Infectious disease outbreak monitoring
- Real-time epidemiology
- Public health reporting
- Signal detection

Savings
- Lab savings
- Reduced RWD costs

Patient Protection
- Adverse event reduction
- Clinical Decision Support (CDS)
- Healthcare research

SHIELD Stakeholders:

FDA, CDC, NIH, ONC, CMS, Industry, Labs, EHR Vendors, Standards Developers, more.

Get involved. Contact: Michael.Waters@fda.hhs.gov

Systemic Harmonization and Interoperability Enhancement for Lab Data
Case Example: Leveraging RWE in a Pre-Market De Novo Application

FDA approved an indication expansion:

from: *adjunctive* use followed by an invasive monitoring procedure

to: *non-adjunctive* use—where Continuous Glucose Monitor CGM information can be used directly to make diabetes treatment decisions.

Patient & Healthcare Provider Experience; Wearable Device Data Logs:

- Panelist clinical experience *w/* current off-label non-adjunctive use of the marketed device.
- Direct comments from current users regarding their experience with off-label non-adjunctive use of the marketed device including public comments from patients, caregivers and other members of the community impacted by the disease.
- Data was generated both by the device (through event logs) and by the patients (through a log of their experience).
- Additional safety endpoints around symptomatic (subject reported) or asymptomatic (device derived) hypoglycemia as well as severe hypoglycemic episodes were reported.

FDA granted a De Novo for computer-assisted triage and notification software intended to notify an on-call neurosurgeon specialist of a potential stroke in their patients.

Traditional Multi-Reader Multi-Case (MRMC) Study: MRMC study with hundreds of patient cases and 20 to 30 readers in multiple reading sessions (with and without device).

https://www.accessdata.fda.gov/cdrh_docs/pdf17/DEN170073.pdf
Case Example: Leveraging RWE in a Pre-Market De Novo Application

FDA granted a De Novo for computer-assisted triage and notification software intended to notify an on-call neurosurgeon specialist of a potential stroke in their patients.

Traditional Multi-Reader Multi-Case (MRMC) Study: MRMC study with hundreds of patient cases and 20 to 30 readers in multiple reading sessions (with and without device).

Study with RWE— Published studies comparing the standard of care with and without computer-assisted triage software was used to supplement stand alone testing.

- Meta-analysis from peer reviewed literature recording the time to notification for an on-call neurosurgeon.
- Stand alone testing to estimate the performance of the subject device to a test data set with known ground truth for sensitivity and specificity analysis.

https://www.accessdata.fda.gov/cdrh_docs/pdf17/DEN170073.pdf
Case Example: Leveraging a RWD Database to Enable Pre-Market Claims

FDA cleared two 510(k)s for sequencing assays for variant/variant combinations associated with cystic fibrosis using a public next-generation sequencing (NGS) database.

Traditional Studies: Full clinical trials/summary of information available in peer-reviewed literature to provide evidence of the test’s clinical validity.

https://www.accessdata.fda.gov/cdrh_docs/reviews/K124006.pdf
https://www.accessdata.fda.gov/cdrh_docs/reviews/K132750.pdf
Case Example: Leveraging a RWD Database to Enable Pre-Market Claims

FDA cleared two 510(k)s for sequencing assays for variant/variant combinations associated with cystic fibrosis using a public next-generation sequencing (NGS) database.

Traditional Studies: Full clinical trials/summary of information available in peer-reviewed literature to provide evidence of the test’s clinical validity.

Study Using Public Database – An established publicly-maintained database hosted by the academic institution was used to support clinical validity of the test in lieu of clinical trials.

- Database used as a source of valid scientific evidence to establish which variants/variant combinations were causal for the target disease.
- Additional relevant patient information, e.g. sweat chloride, lung function, pancreatic status, and *Pseudomonas* infection rate, associated with each variant/variant combination were included in the evaluation.

https://www.accessdata.fda.gov/cdrh_docs/reviews/K124006.pdf
https://www.accessdata.fda.gov/cdrh_docs/reviews/K132750.pdf
Case Example: Embedded Pivotal Trial in a RWD Source for a Pre-Market De Novo Application

FDA granted a De Novo for a newborn screening assay for enzymes associated with lysosomal storage disorder from dried blood spots.

Traditional Pivotal Trial: Full traditional pivotal trial to capture each of the endpoints that were captured in the embedded pivotal trial.

https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN150035.pdf; Advisory panel meeting, 8/10/16
FDA granted a De Novo for a newborn screening assay for enzymes associated with lysosomal storage disorder from dried blood spots.

Traditional Pivotal Trial: Full traditional pivotal trial to capture each of the endpoints that were captured in the embedded pivotal trial.

Collection from RWD source – In lieu of a traditional pivotal trial, a pivotal clinical trial was embedded in routine clinical practice.

- Pivotal trial evaluated performance on all samples submitted to a state lab for routine screening in lieu of banked bio-specimens artificially enriched with known positives.
- Used a department of health surveillance program to check for false negatives reported to the state’s contracted metabolic centers.
- This study was conducted under an Investigational Device Exemption (IDE).

https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN150035.pdf; Advisory panel meeting, 8/10/16