
1

Erik Dasbach
Economic and Data Sciences, Merck & Co.

Joseph Levy
Postdoctoral Fellow, University of Maryland School of Pharmacy 

Fernando Alarid-Escudero
Post-Doctoral Associate, University of Minnesota 

OPEN SOURCE SOFTWARE FOR 

BUILDING HEALTH ECONOMIC MODELS

At the end of this workshop attendees 

should gain an understanding of how 

new software modeling packages can 

• accelerate model development, 

• decrease rework, and 

• improve model transparency and 

verification

Learning Objectives



2

1. The case for why model 

development in our field needs 

to evolve 

2. Markov models using open 

source software 

3. Microsimulation modeling

Outline of Workshop

The case for 

why model development 

needs to evolve 

Part 1



3

1990 2018

?

2025

held on to the same ways of working



4

or

data scientist



5

“Why does the spreadsheet 

remain the 

model development platform of

choice in the

pharmacoeconomics field?”

1990 2018

Data Scientist to the Health Economist

broad accessibility

full stack platform

transparency 

the ability to examine 

cell formula

Payers and reimbursement agencies and 

modelers favor the spreadsheet because 

Health Economist to the Data Scientist



6

“transparent?” 

Data Scientist to the Health Economist

“cell references are not 
transparent”

“violates the DRY principle 
of coding” 

embraces WET code

“code is hard to reuse”

“lacks a testing framework”

spaghetti code 

Don’t Repeat Yourself
Write Everything Twice+

requires shotgun surgery 
to reuse

Data Scientist to the Health Economist



7

“What do you mean 

by a 

testing framework?” 

Health Economist to the Data Scientist

“How do you know 

your model is 

correct?” 

Data Scientist to the Health Economist



8

“Well, I test edge 

cases and I have a 

colleague review the 

model.” 

Health Economist to the Data Scientist

“A testing framework 

documents your 

tests?”

Data Scientist to the Health Economist



9

Unit Tests

• software testing method by which individual 
units of code are isolated and tested to 

demonstrate that the individual parts are 

correct (Kolowa & Huzinga, 2007)

Data Scientist to the Health Economist

Integration Tests

• the phase in software testing in which 
individual software modules are combined 

and tested as a group

• https://en.wikipedia.org/wiki/Integration_tes
ting

Data Scientist to the 

Health Economist

https://en.wikipedia.org/wiki/Integration_testing


10

Test Suite
• a collection of all the test 
cases 

Data Scientist to the 

Health Economist

1990 2018

heemod

data viz

Let me show you what you 

have been missing out on…

BCEA

IDE

Data Scientist to the Health Economist



11

Examples of Software for 
Economic Evaluations

Part II 

Joe Levy 

Outline

• Briefly review State Transition Modeling 

• Introduce HEEMOD and DICE for Markov Modeling

• Describe Sick Sicker Model 

• Show syntax and model builds

• Compare anecdotal experiences 



12

State Transition Models
• Representations of clinical scenarios by

• Time in states 
• Transitions between states 
• Accrue costs and effects from being in states
• Transition (and cost/effects) differentially by 

treatment 

• Markov Cohort
• Cohort transitions as percentage

• Microsimulation
• Individuals progress with first order 

uncertainty

State 
Transition 

Models 

Microsimulati
on Model

Markov 
Model

Siebert, Uwe, et al. "State-transition modeling: a report of the ISPOR-SMDM modeling good 
research practices task force-3." Value in Health 15.6 (2012): 812-820.

Software 1: HEEMOD

• Markov Models for Health Economic Evaluation (HEEMOD) R-Package

• Objective: Simple, declarative syntax to specify and execute Markov 
models and partitioned survival models 

• Define Strategies, Model Parameters, Transitions, State Values

• Can perform deterministic and probabilistic sensitivity analysis

• Built in functions to discount, convert rates to probability, hazard, 
probability over time etc. 

• Models are stored as objects, generate graphics in R (ggplot2) 



13

Software 2: DICE

• Discretely Integrated Condition Event simulation (DICE).

• A modeling technique designed for general decision-analytic 
modeling, conceptualizes a disease process and its management in 
terms of conditions and events.

• Conditions: Aspect of model that persist over time, have levels which can be 
modified by other conditions or events

• Events: Aspects of the model that happen at any point in time, can effect level 
of conditions or other events

• Algorithm/engine which can construct markov, microsimulation and 
discrete event simulation. 

• Algorithm has been implemented in excel, R and pyton

Example: Sick Sicker Markov 

• Compare Treatment to No 
Treatment 

• 4 State Model

• Treatment Modifies Cost of Sick, 
Sicker and Utility of Sick

• Transitions Probabilities are the 
Same between treatment groups

• Time horizon: 30 years

Krijkamp, Eline M., et al. "Microsimulation Modeling for Health Decision Sciences Using R: A 
Tutorial." Medical Decision Making 38.3 (2018): 400-422.



14

Example: Sick Sicker Markov 

Parameter Treat No Treat

p.HS1
p.S1S2
p.S1H
p.HDie
RR.SickDie (vs H)
RR.SickerDie (vs H)

0.15
0.105

0.5
0.005

3
10

0.15
0.105

0.5
0.005

3
10

cost.H
cost.S1
cost.S2

2000
4000

15000

2000
4000+12000

15000+12000

Utility.H
utility.S1
Utility.S2

1
0.75
0.5

1
0.95
0.5

Discount Rate 3% 3%

define_transition

Parameter No Treat Treat

p.HS1
p.S1S2
p.S1H
p.HDie
RR.SickDie (vs H)
RR.SickerDie (vs H)

0.15
0.105

0.5
0.005

3
10

0.15
0.105

0.5
0.005

3
10

cost.H
cost.S1
cost.S2

2000
4000

15000

2000
4000+12000

15000+12000

Utility.H
utility.S1
Utility.S2

1
0.75
0.5

1
0.95
0.5

Discount Rate 3% 3%



15

define_parameters

Parameter No Treat Treat

p.HS1
p.S1S2
p.S1H
p.HDie
RR.SickDie (vs H)
RR.SickerDie (vs H)

0.15
0.105

0.5
0.005

3
10

0.15
0.105

0.5
0.005

3
10

cost.H
cost.S1
cost.S2

2000
4000

15000

2000
4000+12000

15000+12000

Utility.H
utility.S1
Utility.S2

1
0.75
0.5

1
0.95
0.5

Discount Rate 3% 3%

define_parameters

Parameter No Treat Treat

p.HS1
p.S1S2
p.S1H
p.HDie
p.S1Die
p.S2Die

0.15
0.105

0.5
0.005

0.01492512
0.04888987

0.15
0.105

0.5
0.005

0.01492512
0.04888987

cost.H
cost.S1
cost.S2

2000
4000

15000

2000
4000+12000

15000+12000

Utility.H
utility.S1
Utility.S2

1
0.75
0.5

1
0.95
0.5

Discount Rate 3% 3%



16

define_state

Parameter No Treat Treat

p.HS1
p.S1S2
p.S1H
p.HDie
p.S1Die
p.S2Die

0.15
0.105

0.5
0.005

0.01492512
0.04888987

0.15
0.105

0.5
0.005

0.01492512
0.04888987

cost.H
cost.S1
cost.S2

2000
4000

15000

2000
4000+12000

15000+12000

Utility.H
utility.S1
Utility.S2

1
0.75
0.5

1
0.95
0.5

Discount Rate 3% 3%

define_strategy

Parameter No Treat Treat

p.HS1
p.S1S2
p.S1H
p.HDie
p.S1Die
p.S2Die

0.15
0.105

0.5
0.005

0.01492512
0.04888987

0.15
0.105

0.5
0.005

0.01492512
0.04888987

cost.H
cost.S1
cost.S2

2000
4000

15000

2000
4000+12000

15000+12000

Utility.H
utility.S1
Utility.S2

1
0.75
0.5

1
0.95
0.5

Discount Rate 3% 3%



17

Run_model

Run_model



18



19

DICE

• Dice is a way to conceptualize any model type, at its core it is an 
algorithm that iteratively evaluates conditions and events 

• Conditions and Events can be coerced to recreate Markov or 
microsimulations 

• Will show only Excel implementation 

• DICE Demo workbooks, and the engine available at Evidera.com, 
several papers and demos serve as starting points to comprehend 
syntax



20

DICE-Conditions

DICE-Conditions

Conditions:
Name CurCond Level Initial Level

ID 0

Time 0

TimeHorizon 30

IntervNum 1

Cycle 1

Healthy 100%

Sick 0

Sicker 0

Dead 0

HealthyDead 0

HealthySick 0

SickHealthy 0

SickSicker 0

SickDead 0

SickerDead 0

pHD 0.005

pHSick 0.15

pSickH 0.5

pSickDead 0.014925125

pSickerDead 0.04888987

pSickSicker 0.105

cH 2000

cSick 4000

cSicker 15000

cTrt 12000

uH 1

uSick 0.75

uSicker 0.5

uTrt 0.95

DiscountRate 3.00%

NextEventTime 0

NextEvent 1

Process

Process

States

Transitions

Probabilities 

Costs

Utilities



21

All Events
Name CurEventTime Initial Time To Event Table

Start 99999999Now tblStart

Transition 31Cycle tblTransition

End 30TimeHorizon tblEnd

Event: Start
Type Name Expression Notes

Condition Time Start To reset the clock to zero

Event Start Never To avoid infinite loop

Output Tmt CHOOSE(IntervNum,"NoTreat","Treat")

Output QALYs 0 Initialize to zero

Output Cost 0 Initialize to zero

Output dQALYs 0 Initialize to zero

Output dCosts 0 Initialize to zero

Condition HealthyDead 0 Set according to treatment

Condition HealthySick 0

Output CostTmt 0

Condition NextEventTime MIN(CurEventTime) Find next event time

Condition NextEvent MATCH(NextEventTime,CurEventTime,0) Find next event

Event: End
Type Name Expression Notes

Condition Time End To update the clock

Event: Transition (name: tblTransition)
Type Name Expression Notes

Condition Time Transition

Output QALYs QALYs+(Healthy*uH+Sick*Choose(IntervNum,uSick,uTrt)+Sicker*uSicker)

Output Cost

Cost+(Healthy*cH+Sick*CHOOSE(IntervNum,cSick,cSick+cTrt)+Sicker*CHOOSE(IntervNum,cSicker,cSicker+cT

rt))

Condition HealthyDead pHD*Healthy

Condition HealthySick pHSick*Healthy

Condition SickHealthy pSickH*Sick

Condition SickSicker pSickSicker*Sick

Condition SickDead pSickDead*Sick

Condition SickerDead pSickerDead*Sicker

Condition Healthy Healthy-HealthySick-HealthyDead+SickHealthy

Condition Sick Sick+HealthySick-SickHealthy-SickDead-SickSicker

Condition Sicker Sicker+SickSicker-SickerDead

Condition Dead Dead+SickDead+SickerDead+HealthyDead

Event Transition Time+Cycle

Condition NextEventTime Min(CurEventTime) Find next event time

Condition NextEvent Match(NextEventTime,CurEventTime,0) Find next event

Dice-Events

Dice-Events
Event: Transition (name: tblTransition)

Type Name Expression

Condition Time Transition

Output QALYs QALYs+(Healthy*uH+Sick*Choose(IntervNum,uSick,uTrt)+Sicker*uSicker)

Output Cost

Cost+(Healthy*cH+Sick*CHOOSE(IntervNum,cSick,cSick+cTrt)+Sicker*CHOOSE

(IntervNum,cSicker,cSicker+cTrt))

Output dQALYs

dQALYs+(Healthy*uH+Sick*Choose(IntervNum,uSick,uTrt)+Sicker*uSicker)/(1+

DiscountRate)^Time

Output dCosts

dCosts+(Healthy*cH+Sick*CHOOSE(IntervNum,cSick,cSick+cTrt)+Sicker*CHOO

SE(IntervNum,cSicker,cSicker+cTrt))/(1+DiscountRate)^Time

Condition HealthyDead pHD*Healthy

Condition HealthySick pHSick*Healthy

Condition SickHealthy pSickH*Sick

Condition SickSicker pSickSicker*Sick

Condition SickDead pSickDead*Sick

Condition SickerDead pSickerDead*Sicker

Condition Healthy Healthy-HealthySick-HealthyDead+SickHealthy

Condition Sick Sick+HealthySick-SickHealthy-SickDead-SickSicker

Condition Sicker Sicker+SickSicker-SickerDead

Condition Dead Dead+SickDead+SickerDead+HealthyDead

Event Transition Time+Cycle

Condition NextEventTime Min(CurEventTime)

Condition NextEvent Match(NextEventTime,CurEventTime,0)



22

HEEMOD DICE

Tmt QALYs Cost dQALYs dCosts

NoTreat 22.20284 114982.7 15.17023 72103.75

Treat 22.99945 214738.7 15.70836 134423

Runtime: 0.33 Seconds Runtime: <1 Second

Advantages Disadvantages

-Easy to learn (especially for R Users)
-Replicated examples from Decision 
Modelling for Health Economic 
Evaluation
-Can write model with scripting only OR 
using tabular inputs (excel based)
-Unit tests are built into code, fully 
transparent 
-Sensitivity analysis, half-cycle correction, 
discounting, rate to probability, all easy to 
implement 
-Can be run in parallel (multi-core) 

-Syntax may be hard to learn for non-R 
users
-Markov Only, without plans to 
implement additional features 
-Probabilistic Sensitivity Analysis is slow 
depending on complexity (3-6 minutes)

HEEMOD



23

Advantages Disadvantages

-Any type of decision analytic model can 
be built this way—unifying 
-Familiar Excel syntax (if using)
-Structure and implementation are 
consistent across model types 

-Less worked examples 
-PSA is slow (excel)
-Similar pitfalls to excel transcription 
errors
-Similar time to learn DICE than general 
excel, setting up PSA similar 
-No graphics 

DICE


