WHY LOOK FOR ADDITIONAL DATA TO ENRICH THE KAPLAN-MEIER CURVES?

Immuno-oncology, only an example

YIDOU ZHANG
Health Economics and Payer Analytics Director
Oncology Payer Evidence and Pricing, AstraZeneca

Disclosures

• Yiduo Zhang is an employee of AstraZeneca Pharmaceutical LP.
• The views and opinions expressed herein are his own and cannot and should not necessarily be construed to represent those of AstraZeneca or its affiliates.
Challenges in demonstrating the FULL value of oncology therapies, especially immuno-oncology (I-O)

- Immature OS
 - Curve flattening for I-O arm
 - High uncertainty in extrapolation of OS

- Heterogeneity in treatment outcome
 - OS outcomes differ by response status
 - OS and response differ by biomarkers (e.g., PD-L1, tumor mutations)
 - Multiple PD-L1 tests and test cut-offs

- Response criteria may no longer fit-for-purpose
 - RECIST may not capture main patterns of response
 - Traditional RECIST-based PFS to OS relationship may be different for I-Os

- Subsequent I-O treatment confounds the long term outcomes
 - RCTs outcomes, especially OS, might be confounded by subsequent I-Os
 - First-line studies showed high levels of subsequent use of I-O in control arms (> 50%)

I-O has the potential to transform cancer treatment

- In a subset of patients, immunotherapy strategies have the ability to induce highly durable tumor responses, resulting in a plateau in the tail of the survival curve

- Combination therapies, among I-O or with targeted therapies may unlock the full potential of immunotherapy, resulting in faster sustained responses and improved survival

RCTs may only capture a small fraction of the total OS benefits, highlighting the importance of extrapolation for reimbursement decision-making.

- Simulation based on ipilimumab in second-line metastatic melanoma

High levels of uncertainty arise when extrapolating immature OS data, which demands additional evidence to inform some reimbursement decision-making.
Improved efficacy from I-O treatments often leads to reduced event rate, resulting in lower OS maturity and certainty for long term outcomes required by reimbursement decision-making.

Why look for additional data to support interpretation to the KM curves?

Pronounced OS difference by response status creates challenge for modeling the patient population as a whole.

Implication

- Response groups need to be extrapolated individually to reflect potentially different underlying biological process.

References:

BOR, best overall response; CR, complete response; I-O, immuno-oncology; irRC, immune-related response criteria; K-M, Kaplan-Meier; OS, overall survival; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria In Solid Tumors; SD, stable disease; WHO, World Health Organization.
Why look for additional data to support interpretation to the KM curves?
Patient who progressed, as defined by RECIST 1.1, may have lower tumor burden than baseline, this is commonly observed in I-O.

Example: anti-PD1 therapy in previously treated NSCLC patients

1. Progression at tumor burden significantly lower than baseline

Progression criteria according to RECIST 1.1
- Based on CT scan (not symptoms or quality of life)
- Target lesion increase by 20% compared to the lowest point (not the baseline)
- Any new lesions

Why look for additional data to support interpretation to the KM curves?
Due to the I-O tumor kinetics, it is possible to observe larger OS gain despite smaller PFS gain or relatively low response rate

PFS HR vs OS HR

<table>
<thead>
<tr>
<th>PFS HR vs OS HR</th>
<th>Δ ORR vs OS HR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modest improvements in PFS may result in a large improvement in OS
Modest improvements in ORR may result in a large improvement in OS

A PFS HR ≤ 0.9 or Δ ORR > 10% may be associated with an OS HR of ≤ 0.8

HR, hazard ratio; I-O, immuno-oncology; KN, Keynote; ORR, objective response rate; rivo, nivolumab; OS, overall survival; PFS, progression-free survival.

I-O, immuno-oncology; NSCLC, non-small-cell lung cancer; OS, overall survival; PD-1, programmed death-1; PFS, progression-free survival; RECIST, Response Evaluation Criteria In Solid Tumors

Implications: what good looks like?

Ideal OS extrapolations should be designed to account for the underlying biomedical processes and uncertainty in clinical data, leveraging rich data collected in clinical trials and RWE studies.

- Immature OS
- Heterogeneity in treatment outcome
- Response criteria
- Subsequent I-O treatment

I-O, immuno-oncology; OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival; QoL, quality of life; RCT, randomized controlled trial; RECIST, Response Evaluation Criteria In Solid Tumors.