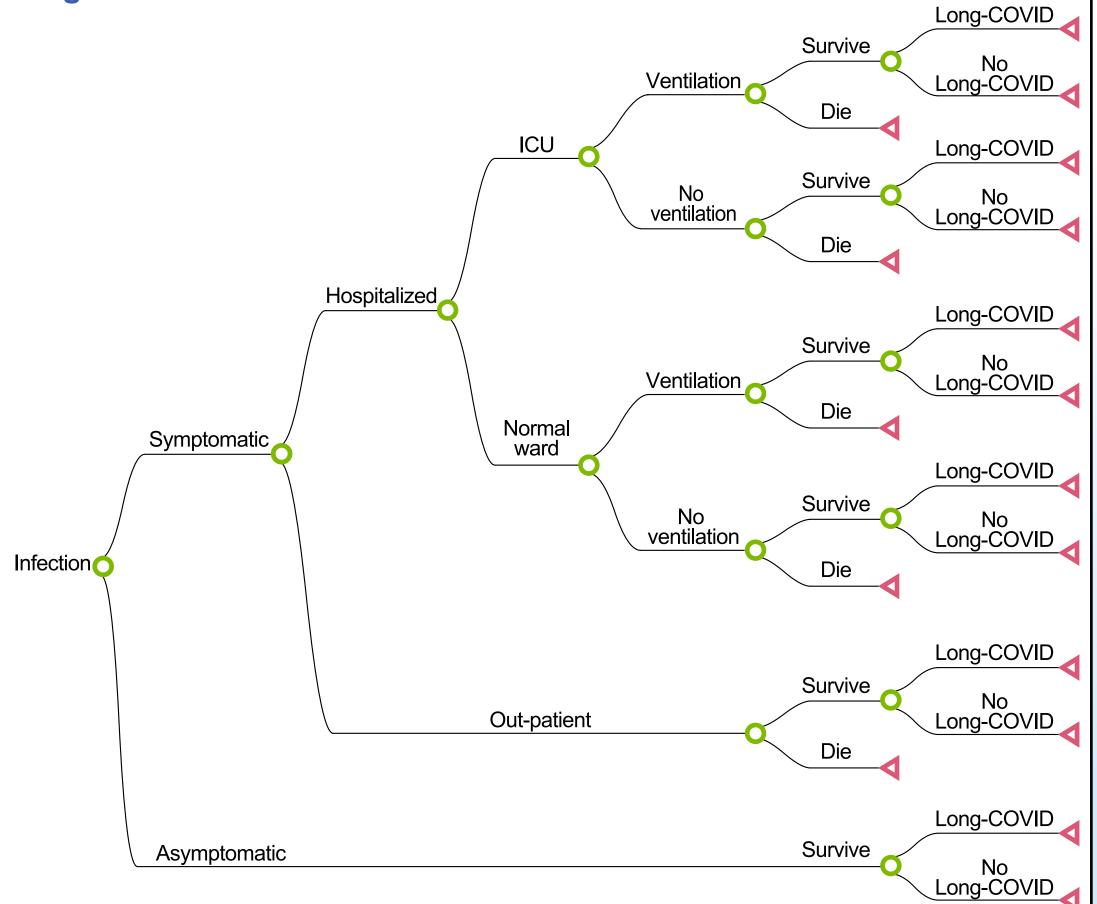
Public Health Impact of Pediatric BNT162b2 XBB.1.5-adapted COVID-19 Vaccine in the United States


INTRODUCTION

- As of March 2024, there have been more than 169.000 COVID-19 hospitalizations and 4,200 deaths among the population age <18 years in the US.^{1,2}
- Vaccination can help mitigate COVID-19 burden; however, uptake among the pediatric population in the US has been low. This has been especially true for the updated BNT161b2 XBB.1.5-adapted COVID-19 vaccine, which has had an uptake between 6.5% and 8.5% among the pediatric population age <18 years.³
- The objective of this study was to assess the public health impact of BNT162b2 XBB.1.5-adapted COVID-19 vaccination in the population age <18 years compared with no vaccination in the US.

METHODS

- A previously published integrated Markov cohort decision tree model⁴ was adapted to assess the impact of BNT162b2 XBB.1.-adapted COVID-19 vaccination in the pediatric population on symptomatic cases, hospitalizations, deaths, and healthcare costs
- The Markov component of the model tracked the target population through mutually exclusive health states, using a Susceptible-Infected-Recovered (SIR) structure, and the decision tree modeled disease severity and treatment pathways (e.g., outpatient, inpatient, intensive care unit) and related outcomes (Figure 1).

Figure 1. Decision Tree Structure

Abbreviations: ICU = intensive care unit

Inputs

- Epidemiological model inputs were based on data from Centers for Disease Control and Prevention (CDC) or published in the literature (Table 1)
- Cost inputs were based on the literature and healthcare resource use assumptions (Table 2)
- Vaccine coverage was based on uptake of the BNT162b2 XBB.1.5adapted COVID-19 vaccine (updated) (**Table 3**)
- Vaccine effectiveness and an assumed 6-month duration of protection were based on a real-world evidence study of vaccine effectiveness in the pediatric population (**Table 3**).⁵

Alon Yehoshua,¹ Ben Yarnoff,² Manuela Di Fusco,¹ Santiago Lopez,¹ Abby Rudolph,¹ Elizabeth Thoburn,¹ Kinga Marczell³ ¹Pfizer Inc., New York, NY, USA; ²Evidera Inc, Bethesda, MD, USA; ³Evidera Ltd., Budapest, PE, Hungary

MET	HOD	S (con	ntinue	d)		RESI	JLTS		
Table 1. Epidemic	logy and	Clinical	Inputs		For those age 6 month	•		• •	
Input	Age 6 months to 4 years	Age 5–11 years	Age 12–17 years	Source	compared with no vaccination, the NT162b2 XBB.1.5-adapted CO 19 vaccine resulted in 33,045 fewer symptomatic cases, 653 fewe hospitalizations, five fewer deaths, and \$77,994,843 in direct treat				
Total population	17,433,787	28,384,878	25,135,943	US Census ⁶	cost savings (Table 4). Incorporating caregiver productivity losses				losses
Attack rate (any infection)	5.3%	3.6%	5.6%	CDC ⁷	contributed an addition	contributed an additional \$8,362,282 in cost savings.			
Probability Infection is Symptomatic		51.1%		Average of Accorsi et al. ⁸ and US studies identified by Sah et al. ^{9 b}	 Despite not being the largest group, most of the impact was amo those age 12–17 years (64% of cases, 51% of hospitalizations, 6 deaths, and 55% of treatment costs) due to higher vaccine cover 			ons, 60%	
Hospitalization proportion among symptomatic infections	4.13%	1.40%	1.34%	CDC ¹⁰	this group (11.9% vs. 6 years and 5–11 years,		•	ose age 6 m	ionths to
ICU proportion among hospitalized	22.1%	29.7%	29.7%		al Impact o	of Vaccina	tion		
Ventilation proportion among ICU	8.5%	27.6%	27.6%	Di Fusco et al. ¹¹	Outcome	Age 6 months to	Age 6 months to 4	Age 5–11	Age 12
Long COVID						17 years*	years	years	year
					Symptomotic cocco averted	22.045	3,966	7,777	
Proportion of outpatient					Symptomatic cases averted	33,045	0,000	• , • • •	21,30
Proportion of outpatient or asymptomatic cases	1.6%	6.2%	7.9%		Hospitalizations averted	653	192	128	
Proportion of outpatient	1.6%	6.2%	7.9%	Funk et al ¹²		·			
Proportion of outpatient or asymptomatic cases that develop long	1.6% 5.8%	6.2% 7.8%	7.9% 20.4%	Funk et al. ¹²	Hospitalizations averted	653			334
Proportion of outpatient or asymptomatic cases that develop long COVID ^a Proportion of inpatient				Funk et al. ¹²	Hospitalizations averted Deaths averted Direct medical treatment	653 5 \$77,994,843	192 1 \$8,059,443	128 1 \$16,497,533	334 3 \$53,437
Proportion of outpatient or asymptomatic cases that develop long COVID ^a Proportion of inpatient cases that develop Long COVID ^a				Funk et al. ¹²	Hospitalizations averted Deaths averted Direct medical treatment costs averted	653 5	192 1	128 1	334 3 \$53,437
Proportion of outpatient or asymptomatic cases that develop long COVID ^a Proportion of inpatient cases that develop Long				Funk et al. ¹²	Hospitalizations averted Deaths averted Direct medical treatment costs averted Caregiver productivity	653 5 \$77,994,843	192 1 \$8,059,443	128 1 \$16,497,533	21,30 334 3 \$53,437 \$5,278,
Proportion of outpatient or asymptomatic cases that develop long COVID ^a Proportion of inpatient cases that develop Long COVID ^a Mortality rate	5.8%	7.8%	20.4%	Funk et al. ¹² McGrath et al. ¹³	Hospitalizations averted Deaths averted Direct medical treatment costs averted Caregiver productivity losses averted	653 5 \$77,994,843	192 1 \$8,059,443	128 1 \$16,497,533	334 3 \$53,437

^a The probability of long COVID was stratified by vaccination status based on reported differences between vaccinated and unvaccinated patients¹⁴; ^b The probability that an infection is symptomatic was assumed to be the same for children and adults.

Table 2. Cost Inputs					
Input	Value	Source			
Cost of outpatient treatment	\$663	Sum of GP visits and medications			
Cost of GP visit	\$229	Kohli et al. ¹⁵			
Number of GP visits	2	Scott et al. ¹⁶			
Medication	\$205	Scott et al. ¹⁶			
Regular ward cost ^a	\$14,325				
ICU without ventilation cost ^a	\$25,688	Di Fusco et al. ¹¹			
ICU with ventilation cost ^a	\$78,245				
Long COVID cost	\$5,969	Sum of GP visits, tests, specialist visits, hospitalizations, and medications			
Number of GP visits	11	Scott et al. ¹⁶			
Number of tests	6	Scott et al. ¹⁶			
Cost of specialist visit for long COVID	\$1,967	Scott et al. ¹⁶			
Number of specialist visits for long COVID	1	Assumption			
Percentage of patients hospitalized with long COVID	7%	Lavery et al. ¹⁷			
Medications	\$219	Scott et al. ¹⁶			

Abbreviations: GP = general practitioner; ICU = intensive care unit ^a Inpatient costs were stratified by vaccination status based on reported differences in length of stay between vaccinated and unvaccinated patients¹⁸

Table 3. Vaccine Coverage and Effectiveness Inputs					
Input	Age 6 months to 4 years	Age 5–11 years	Age 12–17 years	Source	
Vaccine coverage ^a	3.4%	6.0%	11.9%	CDC ³	
Vaccine effectiveness					
against infection		60%			
against symptomatic infection		60%		Lin et al. ⁵	
against hospitalization		70%			

Abbreviation: CDC = Centers for Disease Control and Prevention

^a Coverage rates have been updated to reflect the reported uptake of the XBB.1.5 adapted COVID-19 vaccine. Results reported in the abstract were based on coverage estimates of the first booster (i.e., the third dose of the original monovalent vaccine).

100,510 lewel symptomatic cases, 2,042 lewel nospitalizations, 17 fewer deaths, and \$240,264,756 in direct treatment cost savings, as well as \$27,608,184 in savings from reduced caregiver productivity losses (Table 5).

Table 5. Scenario Analysis: Incremental Impact of **Increasing Vaccination Coverage to 25%**

		-		
Outcome	Age 6 months to 17 years*	Age 6 months to 4 years	Age 5–11 years	Age 12–17 years
Symptomatic cases averted	106,316	29,159	32,403	44,755
Hospitalizations averted	2,642	1,409	531	702
Deaths averted	17	7	4	6
Direct medical treatment costs averted	\$240,264,75 6	\$59,260,608	\$68,739,723	\$112,264,42 6
Caregiver productivity losses averted	\$27,608,184	\$8,467,472	\$8,052,006	\$11,088,706

*Overall Pediatric Population

- Results were sensitive to variation in symptomatic rate of infection, hospitalization rate, and vaccine coverage.
- Results are likely conservative, because they do not include potential indirect effects on transmission or broader societal benefits such as spillover effects on caregivers or the value of lost school days.

Graphic design and editorial support were provided by Kawthar Nakayima and Michael Grossi of Evidera, a business unit of PPD, part of Thermo Fisher Scientific, and was funded by Pfizer. **Disclosures** This study was funded by Pfizer Inc. AY, MDF, SL, AR, and ET are employees of and may hold shares in Pfizer. BY and KF are employees of Evidera, a business unit of PPD, part of Thermo Fisher Scientific, which was contracted by Pfizer to conduct this study

CONCLUSIONS

 Increasing BNT162b2 XBB.1.5-adapted COVID-19 vaccination coverage among those age 6 months to 17 years in the US could generate notable reductions in symptomatic cases, hospitalizations, and deaths and result in medical treatment costs saved. Because there are limited treatment options for the pediatric population, vaccination is the primary tool available to help reduce the burden of COVID-19 in this population. Therefore, increasing pediatric vaccination coverage should be an important public health goal.

References

CDC. COVID-NET Laboratory- confirmed COVID-19	8.
hospitalizations. 2024. Accessed 29 March 2024.	9.
https://covid.cdc.gov/covid-data- tracker/#covidnet-hospitalization-	10
network	
CDC. COVID-19 Monthly Death	
Rates per 100,000 Population by Age Group, Race and Ethnicity, and	
Sex. 2024. Accessed 29 March	11
2024. https://covid.cdc.gov/covid-	10
<u>data-</u> tracker/#demographicsovertime	12
CDC-COVIDVaxView. COVID-19	13
Vaccination Coverage and Vaccine	
Confidence Among Children. 2024.	14
Accessed 29 March 2024.	
https://www.cdc.gov/vaccines/imz- managers/coverage/covidvaxview/in	15
teractive/children.html	10
Di Fusco M, et al. <i>J Med Econ</i> .	16
2022;25(1):605-617.	17
Lin D-Y, et al. <i>Lancet Infect Dis</i> . 2023;23(11):1257-1265.	
Bureau UC. Annual Resident Population Estimates 2020. 2021.	18
https://www.census.gov/programs-	
surveys/popest/technical-	
documentation/research/evaluation- estimates/2020-evaluation-	
estimates/2010s-national-detail.html	
CDC. Rates of COVID-19 Cases or	
Deaths by Age Group and	
Vaccination Status. 2021. Updated July 20, 2023. Accessed November	
14, 2023,	
https://data.cdc.gov/Public-Health-	

Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Groupand/3rge-nu2a

Acknowledgments

- Accorsi EK, et al. JAMA. 2022;327(7):639-651.
- Sah P, et al. *Proc Natl Acad Sci U S* A. 2021;118(34):e2109229118.
-). CDC. Laboratory-Confirmed COVID-19-Associated Hospitalizations. 2023. Accessed July 18, 2023. https://gis.cdc.gov/grasp/COVIDNet COVID19 3.html
- 1. Di Fusco M, et al. *J Med Econ*. 2021;24(1):308-317.
- . Funk AL, et al. JAMA Netw Open. 2022;5(7):e2223253-e2223253.
- . McGrath LJ, et al. Front Pediatr. 2023;11:1261046.
- 4. Tsampasian V, et al. JAMA Intern Med. 2023;183(6):566-580. 5. Kohli M, et al. Vaccine.
- 2021;39(7):1157-1164.
- 6. Scott A, et al. J Med Econ. 2022;25(1):287-298.
- 17. Lavery AM, et al. *MMWR Morb* Mortal Wkly Rep. 2020;69(45):1695-1699.
- . Somani ST. et al. Antimicrob Steward Healthc Epidemiol. 2023;3(1):e19.

For more information please contact: Alon Yehoshua, PharmD, MS Pfizer Inc, New York, NY email: alon.Yehoshua@pfizer.com www.pfizer.coi

