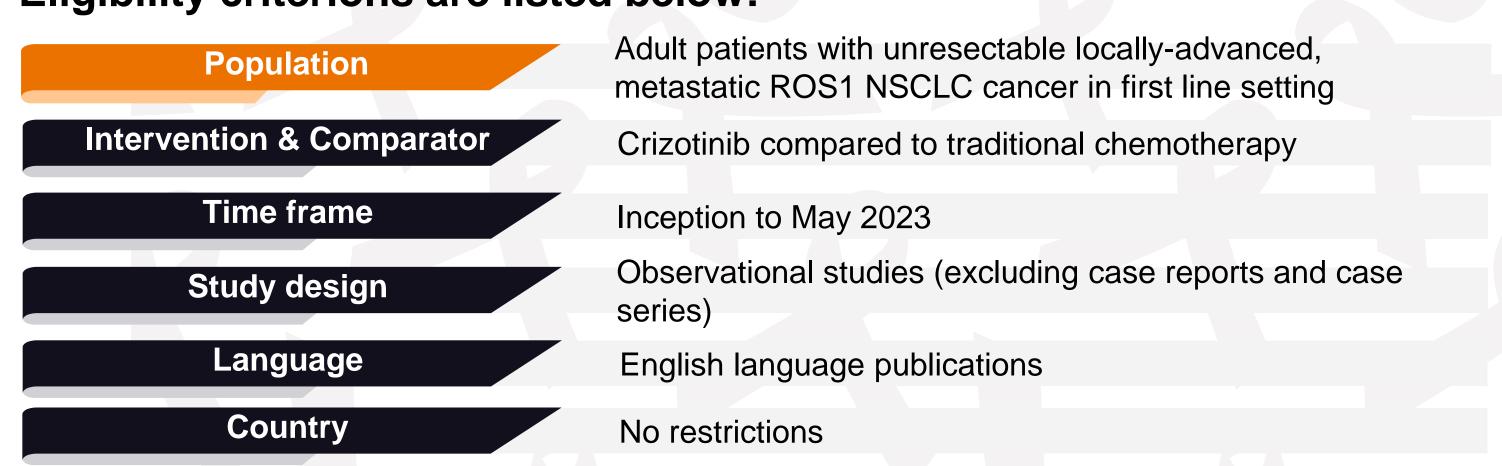
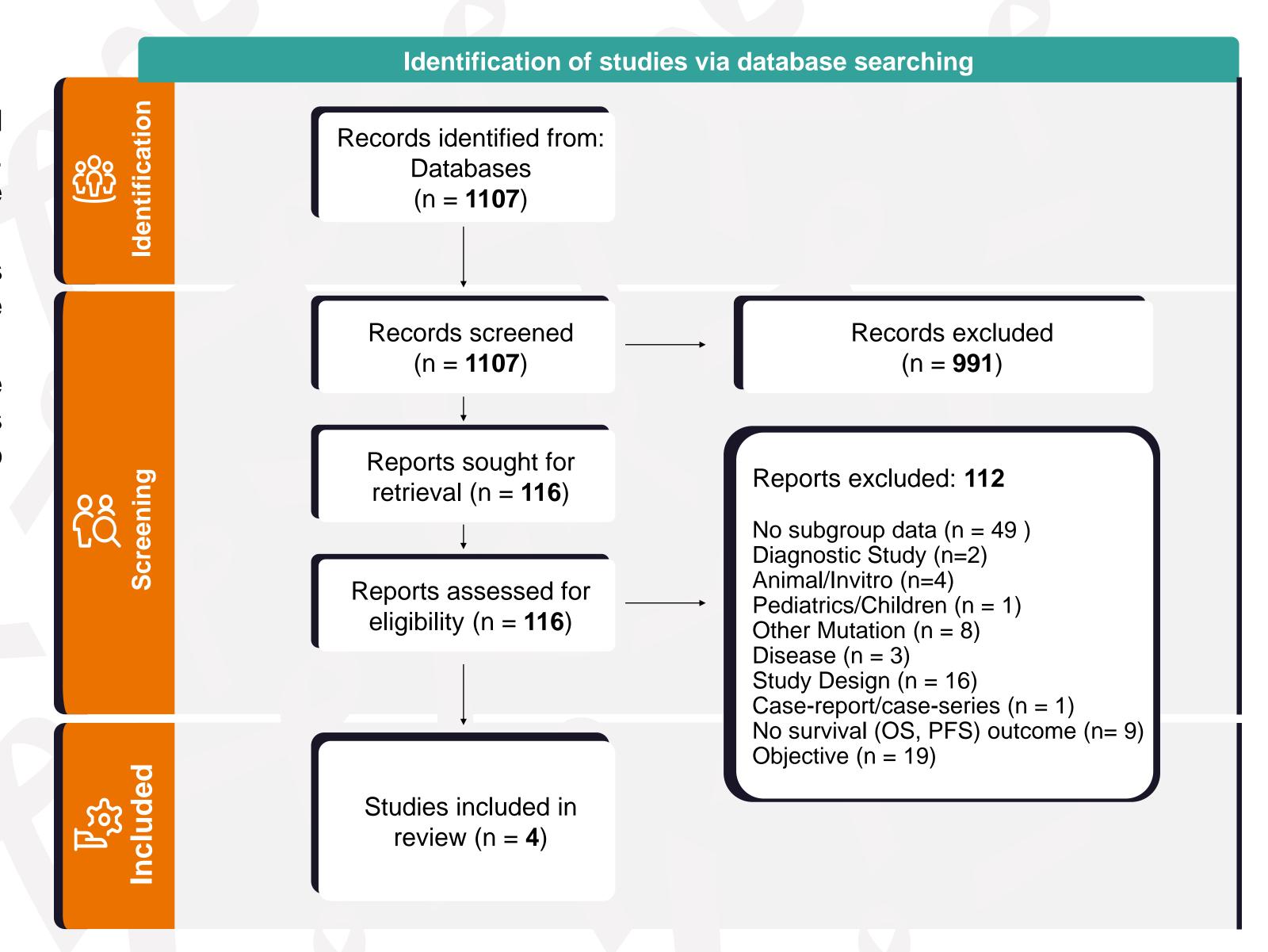
Tomer R¹ Gupta M², Pandey A¹, Sharma S², Jain D², **Sharma S**³ ¹ZS Associates, Noida, UP, India, ²ZS Associates, Gurugram, HR, India, ³ZS Associates,

CO162

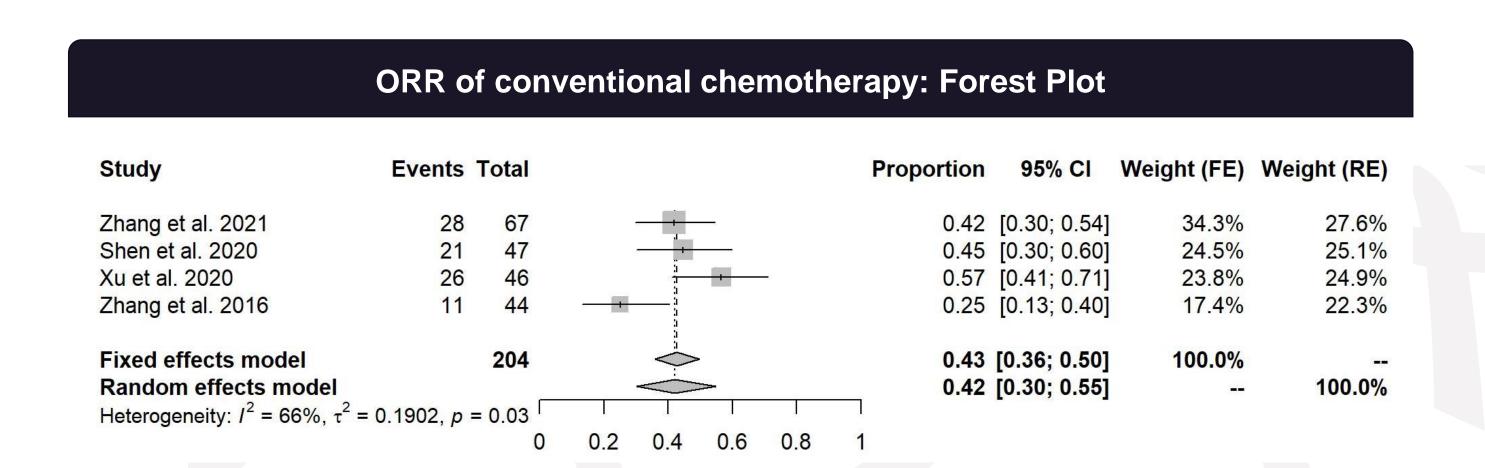



- Lung cancer is the most common cancer with 2.5 million new cases worldwide, accounts for 12.4% of all cancers and is the main cause of cancer-related mortality worldwide. Nonsmall cell lung cancer (NSCLC) is the major histologic subtype and accounts for 80% of all lung cancers^{1, 2}
- In 2024, American Cancer Society estimated 234,580 new cases of lung cancer (116,310 in men and 118,270 in women) in the US²
- Current treatments available for NSCLC includes surgery, radiation therapy, chemotherapy, and targeted therapy³ that encounters challenges like drug resistance, disease progression, high cost of the agent, toxicity etc.4
- Approximately 1%-2% of patients with NSCLC harbor ROS-1 rearrangement, which has now become a successful target of multiple tyrosine kinase inhibitors (TKIs).5
- Crizotinib showed high efficacy in ROS1-positive NSCLC patients with 72% objective response rate in phase I PROFILE 1001 trial.⁶
- The aim of our SLR/meta-analysis was to assess the impact of newer therapies such as crizotinib in comparison to traditional chemotherapies in real world setting.

MCHIOMS

- We conducted a systematic literature review (SLR) in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines⁵. Biomedical databases; Medline®, Embase® (via Ovid®) and Cochrane Library were searched from database inception to May 2023 supplemented with hand searches
- Two independent reviewers performed screening and data extraction, and any conflicts were resolved by a third independent reviewer, when necessary, to ensure methodological rigor
- Meta-analysis was performed using the Metaprop package in R-4.1.3 software. The effect size for Hazard Ratio (HR) and ORR were all pooled with 95% confidence intervals (CIs). Heterogeneity was considered significant for I² - statistic greater than or equal to 50% or the p value was ≥ 0.10, and then the random-effects model was adopted.

Eligibility criterions are listed below:





- Of 1107 publications screened, four studies met the predefined eligibility criteria assessing the comparison between crizotinib and traditional chemotherapy in patients with unresectable locally-advanced, metastatic ROS1 NSCLC cancer in first line setting
- Our meta-analysis of observational studies revealed a pooled PFS HR of 0.34 (95% CI: 0.27-0.43) for crizotinib compared to conventional chemotherapy. Crizotinib demonstrated a significantly higher ORR of 85% (95% CI: 80%-89%) compared to 42% (95% CI: 30%-45%) observed with conventional chemotherapy. The relative difference in ORR between the TKI and conventional chemotherapy was notable at 41% (95% CI: 29%-63%).

Study	logHR	SE	Weight (fixed)		Hazard Ratio , Fixed + Random, 95% CI	Hazard Ratio IV, Fixed + Random, 95% CI
Shen et al. 2020	-1.6133	0.3268	11.7%	12.9%	0.20 [0.10, 0.38]	- i
Xu et al. 2020	-1.0908	0.2160	26.7%	27.3%	0.34 [0.22, 0.51]	
Zhang et al. 2016	-0.9881	0.2921	14.6%	15.8%	0.37 [0.21, 0.66]	- 3 m
Zhang et al. 2021	-0.9539	0.1628	47.0%	44.0%	0.39 [0.28, 0.53]	
Fixed effects model			100.0%		0.34 [0.27, 0.43]	-
Random effects mode	1			100.0%	0.34 [0.27, 0.43]	

ORR of TKI: Forest Plot												
Study	Events	Total					P	roportion	95% CI	Weight (FE)	Weight (RE)	
Zhang et al. 2021	144	168						0.86	[0.79; 0.91]	60.5%	60.5%	
Xu et al. 2020	47	56					-10		[0.72; 0.92]	22.2%	22.2%	
Shen et al. 2020	26	30				- 4		0.87	[0.69; 0.96]	10.2%	10.2%	
Zhang et al. 2016	12	15			-	*	_	0.80	[0.52; 0.96]	7.1%	7.1%	
Fixed effects model		269						0.85	[0.80; 0.89]	100.0%	_	
Random effects model						\Diamond		0.85	[0.80; 0.89]		100.0%	
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	0, p = 0.92			1			l					
		0	0.2	0.4	0.6	8.0	1					

Note: Most studies present the outcomes for chemotherapy and crizotinib in first-line (1L) setting, with the exception of Zhang et al. (2016) which reports PFS-HR and ORR for chemotherapy in first-line (1L) setting, and for crizotinib in second-line (2L) setting. Sub-group analysis was used to adjust for the differences in reporting between first-line and second-line therapies for crizotinib.

Conclusion

In conclusion, our meta-analysis of four observational studies indicates that crizotinib outperforms traditional chemotherapy as a first-line treatment for unresectable locally-advanced, metastatic ROS1 NSCLC. Crizotinib shows significantly improved progression-free survival (HR: 0.34, 95% CI: 0.27-0.43) and a markedly higher objective response rate (85% vs. 42%). These findings support the preferential use of crizotinib in this patient population.

References

- Global Cancer burden growing, amidst mounting needs for services. WHO. 2024.
- 2. Key Statistics for Lung Cancer . American Cancer Society. .
- 3. Lung Cancer Fact Sheet. WHO 2023
- 4. Araghi et al. Recent advances in non-small cell lung cancer targeted therapy; an update review. Cancer Cell International. (2023) 23:162. doi: https://doi.org/10.1186/s12935-023-02990-y
- 5. Muminovic, et al. Importance of ROS1 gene fusions in non-small cell lung cancer. Cancer Drug Resist 2023;6:332-44. doi: 10.20517/cdr.2022.105
- 6. Gendarme et al. ROS-1 Fusions in Non-Small-Cell Lung Cancer: Evidence to Date. Curr. Oncol. 2022, 29, 641–658. doi: https://doi.org/10.3390/curroncol29020057
- 7. Zhang et al. Clinical and molecular factors that impact the efficacy of first-line crizotinib in ROS1- rearranged non-small-cell lung cancer: a large multicenter retrospective study. BMC Medicine. (2021) 19:206. doi: https://doi.org/10.1186/s12916-021-02082-6 8. Xu et al. Crizotinib vs platinum-based chemotherapy as first-line treatment for advanced non-small cell lung cancer with different ROS1 fusion variants. Cancer Medicine. (2020) 9: 3328–3336. doi: 10.1002/cam4.2984
- 9. Zhang et al. Efficacy of crizotinib and pemetrexed-based chemotherapy in Chinese NSCLC patients with ROS1 rearrangement. Oncotarget. (2016). 7:75145-75154. doi: https://doi.org/10.18632/oncotarget.12612 10. Shen et al. First-line crizotinib versus platinum-pemetrexed chemotherapy in patients with advanced ROS1-rearranged non-small-cell lung cancer. Cancer Mediicine. (2020). 9: 3310-3318. doi: https://doi.org/10.1002/cam4.2972