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§ All three ML approaches, XGBoost, RF, and RBM, had a comparable 
performance in predicting the initial treatment strategy in MS, emphasizing the 
utility of using ML models in clinical decision-making. 

§ Future research should focus on expanding the application of ML in predicting 
treatment outcomes to optimize individualized care in MS. 
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Study design and data source
§ This retrospective observational cohort study used the 2015-

2019 Merative MarketScan® Commercial Claims and 
Encounters data.

Study population
§ Adult (18-64 years) MS patients with ≥1 DMA prescription 

were identified from 2016 to 2019. 
Exposure
§ The heDMAs group included natalizumab, alemtuzumab, and 

ocrelizumab. Meanwhile, the meDMAs cohort included 
interferon beta-1a, interferon beta-1b, fingolimod, 
teriflunomide, dimethyl fumarate, and glatiramer acetate. 

Covariate Selection
§ Andersen Behavioral Model was used for covariates selection.
§ Predisposing factors included: Age, Sex, and Region
§ Enabling factors included: Index year,  Employment status, 

Plan indicator and Metropolitan statistical area (MSA)
§ Need factors included: Elixhauser Comorbidities, MS-related 

Symptoms, MS-related Symptomatic Medications, Annualized 
relapse rate, and Healthcare utilization

Selection of ML Methods
§ Random forest (RF) model
§ Extreme gradient boosting (XGBoost) model
§ Rule-based ML model (Prediction rule ensembles, RBM)
Development and Evaluation of ML Models
§ ML Models were trained by 91 baseline factors using 70% of 

the randomly split data.
§ Model hyperparameters were tuned with the 10-fold cross-

validation.
§ RF model: ntree, maxdepth, and mtry
§ XGBoost model: ntree, maxdepth, and learnrate
§ RBM: ntree, maxdepth, and learnrate

§ Validated ML models on the rest of 30% of data
§ Model performance (Area under the curve [AUC]) and top 10 

important predictors were reported.
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BACKGROUND

§ Multiple sclerosis (MS) is an autoimmune 
disorder of the central nervous system that 
affects about 1 million individuals in the 
United States. 

§ With the approval of multiple disease-
modifying agents (DMAs) in recent years, 
therapeutic options for multiple sclerosis (MS) 
patients are constantly evolving. 

§ Considering the benefits of early intervention, 
choosing between the two initial treatment 
strategies (moderate-efficacy disease-
modifying agents [meDMAs] vs. high-efficacy 
disease-modifying agents [heDMAs]) could be 
crucial for MS management. 

§ Evidence from previous studies identified that 
patient characteristics, such as age and disease 
severity, could influence the choice of DMAs.

§ Although machine learning (ML) models are 
often used for disease prognosis and 
progression, the application of ML in 
predicting treatment selection remains 
underexplored. 

§ To the best of our knowledge, ML algorithms 
have not been applied to examine the treatment 
strategies in MS. 

§ This study evaluated the ML approaches in 
predicting the initial treatment strategy 
(heDMAs vs. meDMAs) for MS patients.
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§ Out of 10,003 eligible MS patients, 22.92% initiated heDMAs. 
§ The model performance measures were comparable in XGBoost (AUC 85%, 

accuracy 82%, and F1 score 56%), RF model (AUC 84%, accuracy 75%, and 
F1 score 62%), and RBM model (AUC 84%, accuracy 81%, and F1 score 43%).

§ The number of MS-related outpatient visits, MS-related symptoms, and 
comorbidities were commonly found to be important factors influencing the 
selection of initial treatment strategy. 

Table 1. Performance of ML Models

DMAs were grouped into two categories (heDMAs and meDMAs) based on input from experienced clinicians and two ongoing clinical trials (DELIVER-MS & TREAT-MS).(Ontaneda et al., 2020; Simpson et al., 2021) Considering the data availability, the heDMAs group included natalizumab, alemtuzumab, and ocrelizumab. Meanwhile, the meDMAs cohort included interferon beta-1a, interferon beta-1b, fingolimod, teriflunomide, dimethyl fumarate, and glatiramer acetate. DMAs approved in 2019 or later were not included due to limited availability during the study period. 

Table 2. Performance of ML Models


