

Cost-Effectiveness Analysis of Icosapent Ethyl (IPE) for the Reduction of the Severe Hypertriglyceridemia (HTG) in China

BACKGROUND

- Severe hypertriglyceridemia (Severe HTG), defined as a triglyceride (TG) mg/dL (\geq 5.7 mmol/L), is not only associated with residual risk of cardiovas for patients with reduced low-density lipoprotein cholesterol^[1], but also has independent risk factor for the severity and recurrence of hypertriglycerid acute pancreatitis (HTG-SAP)^[2].
- Icosapent ethyl (IPE; formerly AMR101), as a high-purity prescription form of eicosapentaenoic acid ethyl ester, could efficiently and safely diminish serum TG by 19.9% when compared to placebo in individuals with extremely high TG levels (5.6~22.3 mmol/L) in the Phase III randomized clinical trial (RCT) in China (CTR20170362)^[3]. This result validated the effectiveness and safety of IPE in a Chinese patient group, consistent with the findings of the MARINE trial (NCT01047683)^[4] in the Western community.
- However, no studies have reported whether the IPE treatment is cost-effectiveness in China.

OBJECTIVE

To compare the cost-effectiveness of IPE to placebo for long-term clinical benefit in patients with severe HTG from the perspective of Chinese health care system.

METHODS

Model structure and setting

- A cost-effectiveness analysis was conducted based on a twelve-state Markov model (Figure 1), whose health states included severe HTG, HTG, first event of ischemic stroke (IS), post IS, IS recurrence, first event of myocardial infarction (MI), post MI, MI recurrence, first event of HTG-SAP, post HTG-SAP, HTG-SAP recurrence, and death.
- A lifetime time horizon.
- Corrected by half-cycle correction
- Incremental cost-effectiveness ratios (ICERs) were expressed in CNY (¥) per QALY gained, with all costs and utilities discounted at 5% annually.
- Willingness to pay (WTP) threshold: 3 times China's per capita GDP (¥257,094/QALY, 2022)

Study population

• The target population of this study was adults with severe HTG who had not previously had any CVD events or HTG-SAP events. The baseline characteristics of the simulated patients in the model were consistent with population in the Phase III RCT in China (CTR20170362)^[3].

Intervention and control group

• The intervention group: IPE (4g/day, ¥50/day). The usage and dosage are consistent with its instructions. It is assumed that the number of days that the patient complies with the medication in a year is 80%. The control group: no intervention.

Model input

- Effectiveness Parameters (Table 1,2,3)
- As shown in the Table 1, effectiveness parameters of IPE and placebo were obtained from the Phase III RCT in China^[3]. Other parameters about effectiveness were extracted from the published literature(Table 2 and 3).

Shen Y^1 , Chen P^1 , He X^{1*}

1 School of Pharmaceutical Science and Technology, Tianjin University, China

concentration ≥ 500
scular disease (CVD)
s been shown to be an
demia-induced severe

Table 1. Annual probability of transitions between different health states					
Event		Mean value	Event	Mean value	
Severe HTG	Placebo	40.54% ^[3]	IS recurrence	12.50% ^[5]	
→ HTG	IPE Intervention	62.39% ^[3]	MI recurrence	2.50% ^[6]	
HTG	Placebo	31.11% ^[3] HTG-SAP recurrence		1.36% ^[7]	
\rightarrow Severe HTG	IPE Intervention	25.00% ^[3]	IS mortality in the general population	15.00% ^[8]	
Severe HTG →		4.86% ^[3]	MI mortality in the general population 7.90		
HTG-SAP			HTG-SAP specific mortality	33.00% ^[10]	

Table 2. Annual probability of different event in the general population

Age	IS ^[11]	Age	All-cause mortality ^[13]	RRs for different patients			All-cause
40-49	0.14%	45-49	0.20%	v.s general population	IS	MI	mortality
50-59	0.34%	50-54	0.32%	Patients with HTG ^[14]			
60-69	0.67%	55-59	0.53%		1.61	2.3	1.49
70-79	1.34%	60-64	0.78%	Patients with severe	2.3	1.61	3.08
80+	2.75%	65-69	1.29%	$\mathbf{HTG}^{[14]}$	-10		
Age	MI ^[12]	70-74	2.22%	Patients taking IPE ^[15]	0.72	0.69	-
45-54	0.06%	75-79	3.86%	Patients with IS ^[16]	-	-	1.49
55-64	0.13%	80-84	6.49%	Patients with MI ^[17]			2 00
≥65	0.36%	≥85	15.18%		-	-	3.08

• Utility (Table 4)

- Utility values were sourced from the published literature^[18-22].

Table 4. Utility				
Utility	Base-case	Lower value	Upper value	
Severe HTG ^[18-20]	0.857	0.686	1.000	
$HTG^{[20]}$	0.946	0.757	1.000	
First event of IS or IS recurrence ^[21]	0.327	0.262	0.392	
First event of MI or MI recurrence ^[21]	0.672	0.538	0.806	
First event of HTG-SAP ^[22]	0.695	0.556	0.834	
Post IS ^[21]	0.524	0.419	0.629	
Post MI ^[21]	0.824	0.659	0.989	
Post HTG-SAP ^[22]	0.798	0.638	0.958	

• Costs (Table 5)

- From the perspective of Chinese health care system, this study only includes direct medical costs and utility values were sourced from the published literature^[23-25].

Table 5. C	Costs
------------	-------

Annual treatment costs	Base-case (¥)	Lower Value (¥)	Upper Value (¥)
IPE	14,600	11,680	17,520
First event of IS or IS recurrence ^[23]	50,392	40,313	60,470
First event of MI or MI recurrence ^[23]	40,020	32,016	48,025
First event of HTG-SAP ^[24]	77,236	61,789	92,683
Post IS ^[23]	9,548	7,638	11,457
Post MI ^[23]	8,941	7,153	10,729
Post HTG-SAP ^[25]	1,311	1,049	1,573

Sensitivity analysis

- One-way sensitivity analysis: The maximum and minimum values of the parameters in the model were their 95% confidence intervals or the range of 20% plus or minus the mean value of these parameter.
- **Probabilistic sensitivity analysis:** the model used the Gamma distribution to model costs, the Beta distribution to model probabilities, the Lognormal distribution to model parameters about relative risks.

Table 3. Relative risks (RRs) of the annual incidence of events

RESULTS

Base-case analysis (Table 6)

China).

	Table 6. Results of base	-case analysis	
Index	IPE intervention	Placebo	Incremental
Total cost	¥ 187,868	¥ 37,888	¥137,511
QALYs	11.43	10.68	0.75
ICER	_	_	¥198,939/QALY

Sensitivity analysis

• One-way sensitivity analysis (Figure 2) discount rate and utility of Severe HTG.

	Relative risk value for IS: patients with severe HTG vs the
ters	Transfer probability of "severe HTG" to "HTG"
Irame	Probability of transition from "severe HTG" to
යි Relat	ive risk values for stroke: HTG patients using IPE vs. HTG pati
	Probability of transition from ''HTG'' to ''sever
	HTG Annual

Fransfer probability of "HTG" to "severe HTG" : IP

• Probabilistic sensitivity analysis (Figure 3,4)

- The probability of the IPE being cost-effective is 73% at the ¥257,094/QALY threshold.

Figure 3. ICER Scatter Plot

CONCLUSIONS

the risk of CVD and HTG-SAP in the long-term.

REFERENCES

[1] Sandesara, P.B., et al., The Forgotten Lipids: Triglycerides, Remnant Cholesterol, and Atherosclerotic Cardiovascular Disease Risk. Endocr Rev, 2019. 40(2): p. 537-557. [2] Tu, X., et al., Number of recurrences is significantly associated with the post-acute pancreatitis diabetes mellitus in a population with hypertriglyceridemic acute pancreatitis. Lipids Health Dis, 2023 22(1): p. 82.

[3] WANG Z, ZHANG X, QU Y, et al. Icosapent ethyl therapy for very high triglyceride levels: a 12-week, multi-center, placebo-controlled, randomized, double-blinded, phase III clinical trial i China[J]. Lipids in Health and Disease, 2023, 22(1): 71. DOI:10.1186/s12944-023-01838-8 [4] BAYS H E, BRAECKMAN R A, BALLANTYNE C M, et al. Icosapent ethyl, a pure EPA omega-3 fatty acid: Effects on lipoprotein particle concentration and size in patients with very high triglyceride levels (the MARINE study)[J]. Journal of Clinical Lipidology, 2012, 6(6): 565–572. DOI:10.1016/j.jacl.2012.07.001. [5] Song, J., et al., Incidence, predictors, and prognostic impact of recurrent acute myocardial infarction in China. Heart, 2020. 107(4): p. 313-8. [6] Xu, J., et al., Trends and risk factors associated with stroke recurrence in China, 2007-2018. 2022. 5(6): p. e2216341-e2216341 [7] Lin, X.Y., et al., Incidence and clinical characteristics of hypertriglyceridemic acute pancreatitis: A retrospective single-center study. World J Gastroenterol, 2022. 28(29): p. 3946-3959. [8] Chen, Y., et al., Mortality and recurrent vascular events after first incident stroke: a 9-year community-based study of 0.5 million Chinese adults. Lancet Glob Health, 2020. 8(4): p. e580-e590. [9] Ye, Q., J. Zhang, and L. Ma, Predictors of all-cause 1-year mortality in myocardial infarction patients. Medicine (Baltimore), 2020. 99(29): p. e21288. [10] Wolbrink, D.R.J., et al., Trends in Early and Late Mortality in Patients With Severe Acute Pancreatitis Admitted to ICUs: A Nationwide Cohort Study. Crit Care Med, 2022. 50(10): p. 1513-1521. [11] Tu, W.J., et al., Estimated Burden of Stroke in China in 2020. JAMA Netw Open, 2023. 6(3): p. e231455 [12] Wang D Z, Shen C F, Zhang Y, Trends of acute myocardial infarction incidence in Tianjin over the past 15 years. Chinese Journal of Cardiovascular Diseases, 2017. 45(2): p. 154-159. [13] China Health Statistical Yearbook 2022...Available from: http://www.nhc.gov.cn/mohwsbwstjxxzx/tjtjnj/202305/6ef68aac6bd14c1eb9375e01a0faa1fb.shtml [14] Arca, M., et al., Association of hypertriglyceridemia with all-cause mortality and atherosclerotic cardiovascular events in a low-risk Italian Population: the TG-REAL retrospective cohort analysis 2020. 9(19): p. e015801 [15] Rodriguez, D., et al., Update on Omega-3 Polyunsaturated Fatty Acids on Cardiovascular Health. Nutrients, 2022. 14(23).

[16] Thorvaldsen, P., et al., Stroke trends in the WHO MONICA project. Stroke, 1997. 28(3): p. 500-6. [17] Jiang SL, Ji., Wang Y, et al. Effect of gender on hospitalization prognosis in patients with acute myocardial infarction. Chinese Journal of Cardiovascular Diseases, 2008. 36(7): p. 590-593. [18] Sullivan, P.W., W.F. Lawrence, and V. Ghushchyan, A national catalog of preference-based scores for chronic conditions in the United States. Med Care, 2005. 43(7): p. 736-49.

[19] Janssen, M.F., et al., Population norms for the EQ-5D-3L: a cross-country analysis of population surveys for 20 countries. Eur J Health Econ, 2019. 20(2): p. 205-216. [20] Xie, S., J. Wu, and F. Xie, Population Norms for SF-6Dv2 and EQ-5D-5L in China. Appl Health Econ Health Policy, 2022. 20(4): p. 573-585. [21] Matza, L.S., et al., Acute And Chronic Impact Of Cardiovascular Events On Health State Utilities. Value Health, 2014. 17(7): p. A493. [22] Hollemans, R.A., et al., Superiority of Step-up Approach vs Open Necrosectomy in Long-term Follow-up of Patients With Necrotizing Pancreatitis. Gastroenterology, 2019. 156(4): p. 1016-1026. [23] Wu, B., et al., Health Economic Analysis of Antiplatelet Therapy for Acute Coronary Syndromes in the Context of Five Eastern Asian Countries. Clin Drug Investig, 2018. 38(7): p. 621-630. [24] Jin, M., et al., A 16-year trend of etiology in acute pancreatitis: The increasing proportion of hypertriglyceridemia-associated acute pancreatitis and its adverse effect on prognosis. J Clin Lipidol 2019. 13(6): p. 947-953.e1 [25] Wu, B., et al., Health Economic Analysis of Antiplatelet Therapy for Acute Coronary Syndromes in the Context of Five Eastern Asian Countries. Clin Drug Investig, 2018. 38(7): p. 621-630.

• Compared with placebo, IPE resulted in a total incremental cost per patient of ¥149,980, but provided an additional 0.75 QALYs. The ICER was ¥198,939/QALY gained, indicating that IPE is cost-effective at the WTP threshold of ¥257,094 per QALY in 2022 (3 times of GDP in

- Top 3 parameters that have the greatest impact on the results were utility value of HTG and

Figure 2. Tornado Diagram

Figure 4. Cost-Effectiveness Acceptability Curve

• IPE is cost-effectiveness versus placebo for Chinese patients with severe HTG due to reducing