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Objective: To develop an analytical framework leveraging machine learning (ML) to identify reliable predictors and provide novel clinical insights using real-world data (RWD)

Background and Case Study Background Understanding Models’ Performance Logistic Regression for Predictor Interpretation
: , Table 2. ROC AUC Comparison Across Models Figure 5. Odds Ratio (OR) for 15 Identified Predictors Conclusion
* Healthcare claims databases contain vast amount of data and or 959 C
insights so applying a fit-for-purpose analytical strategy plays a Features used Features| Modelname @ Traindata Test data | - ’ An analytical framework is developed to:
crucial role to leverage the full potential of real-world data to " . Drug abuse, Elixhauser comorbidity, binary —+— 158 (1.19,2.10) - i ' : :
: e L 0 U P : . : Initial Features 1956  Elastic_net 0.64 0.53 Cannabis-related disorder, binary ——¢—— 128 (0.86, 1.90) Idgnt|fg novel/reliable predictors for outcome in
identify hidden and novel insights. Machine Learning (ML) is - < claims database
: : : Initial Features 1956  Lasso 0.63 0.56 Emergency room visits \4 1.08 (1.03, 1.13)
!oecorpmg an.essentlal tool to analyze large number of variables, N Amphetamine salt combination use 1.04 (0.99, 1.10) * Explain the effects of each predictor to the
identify predictors, etc. However, Initial Features 1956  Random_forest 0.63 0.59 SNRI uee 104 (0.98 110) outcome.
— Di ive i ; i Initial Features 1956  XGBoost 0.82 0.60 : '
Different ML models give inconsistent top predictors for the . | Sleep dls.orders 1.00 (0.94, 1.06) Top 3 significant predictors oral SGA Tx instability:
same outcome Route 1 Features 20 Elastic_net 0.61 0.58 Cannabis-related disorder 1.00 (0.96,1.03) D b (a0R=1.58)
: _— : i i * Drug abuse (aOR=1.
— ML models’ feature “importance metric” is hard to interpret Route 1 Features 20  Lasso 0.62 0.58 | >chizophrenia 0.99 (0.98,1.00) d ._
: : : : : Schizoaffective disorders 0.98 (0.96,1.00) * More frequent emergency department visits
— The data engineering and analytical flow in claims databases Route 1 Features 20  Random_forest 0.59 0.59 Establised patient office visits 0.97 (0.95,1.00) (aOR=1.08)
are highly diverse and hard to follow for researchers U 7| B s 20 XGBoost 0.64 0.59 Obsessive-compulsive disorder < 0.97 (0.91,1.03) . Lecs fre.quent psuchotherapy (aOR=0.92)
* Case study background: Identify predictors for oral, Route 2 Features 15 Elastic_net 0.61 0.61 Collection of Veno;s bl:Od .bg Venipr:aure ¢ g'z: Eg'zg' gzg; Fut feorte: In d : h t. higtrist
second-generation antipsychotic (SGA) treatment instabilit Srzropine MEsyiate Hse ¢ ' O HEUTE Eieliess (1) e isebiRlel) Bty Gl [Pl
<chi 7 hrenia (SCZ p ﬁ o df bl') 't affects 1% of ﬁ NS 2 | FERIUIEE 15 Lasso 0.61 0.60 Psychotherapy office visits + 0.92 (0.86, 0.99) to better understand clinical implication and
B :') Ifj?aﬁic:ﬁr:/:/aoildwi)dz Ighly disabling. It aftects 1% of the Route 2 Features 15 Random_forest 0.60 0.60 Psychotherapy inpatient visits \ g 0.92 (0.87,0.97) potentially build a prediction tool to improve
POP . Route 2 Features 15 XGBoost 0.67 0.60 0 1 5 real-world clinical practice
— Oral SGAs are commonly prescribed for SCZ. However, poor
treatment (Tx) stability leads to relapse
— Long-term injectable SGAs are available, but underused. : : , , o o
h J < 'tJ 4k od £ the rick fact J related Table 1. Feature Engineering Structure Figure 2. ML Models Development Models Tunlng & Feature Selection
— There is limited knowledge of the risk factors and relate
mechanism Feature category Feature (n) Round 1:
* Case study objectives: Demographic 12 Train 4 ML models: LASSO, elastic net, random
— !detnttl)fﬁtpreglctcir:g:nng pre-treatment period for Tx Diagnosis, Inpatient, 3-digit ICD-10 502 frci]rest, and XGBoost with initial feature input.
instability of ora S . en,
- , , . Diagnosis, Outpatient, 3-digit ICD-10 2386 Training 1956 out of 14,165 5-folds rep CV
— Understand the effect of each predictor on the Tx instability - 14,165 features data, features selected model training on * Route 1: Identify the top 20 features from
of oral SGAs Drug utilization 12 to start with N=3503, that have 21% 4 models LASSO/ best performing individual
— Build analytical framework for ML guided predictors Elixhauser comorbidity index 31 S prevalence in Dx/Px/Rx EN/RF/XGBOOST model - XGBoost
Identification/interpretation Generic name drug usage 1684 " : « Route 2: Identify features that showed up as
oL L Get data, 4671 pts Stratified sample split:
Cohort Definition Healthcare utilization 10 (78.2% positive Training and testing top 20 features from at least 2 of the 4 ML
Patients with SCZ who initiated oral SGAs from January 2013 to Procedure, Inpatient, CPT/HCPCS 2498 PRSI el hes ST models {15 features selected)
[ : - .t. t .
June 2021 in Marketscan@ US claims data Procedure, Outpatient, CPT/HCPCS 7030 SGA Tx instability) pOSItiVe oUtcome Round 2:
e |ndex event = first oral SGA Grand total 14,165 * Re-train each ML model using the reduced list
: Evaluate model : -
e : Testing data, of features identified by route 1 & 2, then
e Data ellglbllltg/lnsurance enrollment durlng: Each Dx, Px, and Rx use has 2 features created: N=1168 performance on
. . . . . Numeric version to evaluate frequency of use and binary version to evaluate - : testing data evaluate/compare the performance
o 1'Uear pre—lndex penOd (baselme penOd) to extract pFEdICtOFS any use at all. Initial features for model training = Dx, Px, Rx features with 21% 25% bg AUC through AUC
— 6-month post-index period (follow-up period) for outcome prevalence in training data + other features.

|dentify the model from rounds 1 & 2 with

measurement
: : : I : highest AUC in the testing dataset. Identify the
. o . Figure 3. ROC Comparison Among Route 2 Models Figure 4. Prediction Performance of Route 2 Elastic Net Model Ine : _ S )
Figure 1. Outcome Definition: Oral SGA Tx Instability , associated predictors:
ROC Curve Elastic Net
1.0 0=Stable 1=Unstable Elastic net model fit with 15 features selected
6 th _ 600 ROC AUC: 0.61 from route 2.
-mon . o =) e
Tx instability: E= Sensitivity: 0.66 : : :
- ' 2 08- e 1. Report model diagnostic metrics
7 < Precision (or PPV): 0.82 2. Sequentially fit univariate and multivariate
— 0.61 _ . :
o g 400 NPV: 0.29 logistic model with 15 features using
| . Persistence g s Accuracy: 0.62 whole dataset
Oral SGA pts: 2. PDC =20.8 > 0.4+ = 300 .
B Total patients (test dataset): 1168 (100% : : . g
N=4671 3. No dose G otal patients (test dataset) (100%) 3. ldentify the predictors that have significant
°- 8 1 Totalactual positive (unstable) 013 (78%) odds ratio observed in both univariate and
Inidi=ts @ 0.2 . R (AUC = 0.60) 200 Total actual negative (stable): 255 (22%) T o .
= e — ElasticNet (AUC = 0.61) Total predicted positive (unstable): 731 (63%) m.Ul.tl.Va”ate .lOgIStIC models. Work W!th o
N ool # — XGBAUC<060) 0 1 Total predicted negative (stable): 437 (37%) clinicians to interpret the predictors identified
Tx stability: ' ' ' ' : . Predicted label
N=1018 (21.8%) 0.0 0.2 0.4 0.6 0.8 1.0 . . . cpe s . . . -
False positive rate (1-specificity) The model showed high precision (0.82) and sensitivity (0.66) in predicting oral SGA Tx instability
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