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INTRODUCTION

▪ Psychometric analysis is crucial in drug 

development for obtaining reliable and valid 

clinical outcomes assessments (COAs) to 

evaluate drug effects, understand patient 

experiences, aid diagnosis, and support clinical 

decision-making

▪ For clinical decision-makers who are not 

psychometricians (hereafter referred to as “non-

experts”), evaluating whether a COA is valid 

and reliable for an intended use can be 

challenging. As a result, “rules of thumb” are 

often used to interpret psychometric results

▪ Measures that appear psychometrically 

acceptable based on these “rules of thumb” 

may in fact have a higher risk of poor 

performance than is currently understood. Such 

heuristics, while convenient, may lead to 

overestimation of a COA’s true psychometric 

strengths for a given use – resulting in 

underpowered trials, misleading results, or 

more generally exacerbating the replication 

problem in science1

▪ Frequency framing is a data visualization 

technique that converts continuous probability 

distributions for an outcome to discrete 

outcomes proportionate to their likelihood. 

These visualization techniques can make 

probabilities more tangible and understandable 

to general audience

▪ Quantile dot plots are one such visualization.2 

In these plots, a dot represents an equal 

increment of probability, discretizing an 

underlying probability distribution for some 

value of interest

▪ This visualization technique has been shown in 

other contexts to enhance memory of 

distributional information and can promote 

consistent decision-making in the presence of 

risk2

OBJECTIVES

Our aims were to:

1. Conduct a psychometric evaluation of simulated 

COA data using Bayesian methods to generate 

posterior distributions for statistics of interest 

2. Introduce quantile dot plots as a frequency 

framing tool to summarize and interpret the 

Bayesian posteriors for the statistics of interest

3. Demonstrate how quantile dot plots enhance 

understanding of uncertainty and enable non-

psychometric experts to ask questions about 

the data that they otherwise would not have 

been able to
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CONCLUSIONS

▪ Understanding the psychometric performance 

of COAs is critical for drawing correct 

inferences. However, understanding the 

psychometric performance of COAs is a 

complex task that can be challenging for 

clinical decision makers who do not have 

psychometric training. In this regard, quantile 

dot plots offer a powerful tool for frequency 

framing the uncertainty or relative probability 

of results

▪ We demonstrated that Bayesian methods can 

be utilized when evaluating the psychometric 

properties of COAs to generate probabilistic 

statements about psychometric properties. 

Further, presenting these statements via 

intuitive visualization methods, such as 

quantile dot plots, allows non-experts to 

further enhance their understanding of COA 

psychometric properties and make more 

accurate and reliable assessments

▪ Overall, implementing quantile dot plots and 

utilizing Bayesian statistical methods together 

offer a more comprehensive understanding of 

psychometric results than frequentist 

methods alone. This improved understanding 

may empower non-experts to make more 

informed decisions regarding COA selection 

and use in both clinical trials and practice

METHODS

Data

▪ A COA was simulated with 20 items. The data-

generating model sampled factor loadings for 

21 items. The first 20 items represented the 

items for the COA and sampled factor loadings 

from a uniform distribution with loadings ranging 

from 0.30 to 0.90. The final factor loading for 

the 21st item was set to 0.95 to generate a 

Patient Global Impression of Severity (PGIS) 

measure. Item thresholds for response option 

endorsement were set to ensure evenness 

▪ Items were simulated for 500 subjects using a 

graded response model with the R package 

mirt.3,4 The Total Score for the measure was 

computed by summing the responses from the 

20 items

▪ Five continuous co-validators with scores 

ranging from 0 to 100 were simulated in relation 

to the Total Score, with correlation magnitudes 

of 0.08 (Discriminant), 0.18 (Small), 0.25 

(Small/Medium), 0.35 (Medium), and 0.50 

(Large)

Analyses

A suite of basic psychometric analyses was 

pursued to evaluate different aspects of the 

reliability and validity of the COA. These included: 

▪ Structural validity through model fit of a unit-

weighted unidimensional confirmatory factor 

analysis (CFA) model (Figure 1)

▪ Internal consistency with Coefficient Omega 

(Figure 2)

▪ Convergent validity with Pearson correlational 

analyses and five co-validating measures 

(Figure 3)

▪ Known-groups validity using regression 

modelling to evaluate sequential mean 

differences in COA scores across PGIS strata 

for severity (Figure 4)

For each set of results above, Bayesian modelling 

was carried out using the R package blavaan 

using non-informative priors.4,5 Posterior 

probability distributions were generated for all 

results. The posterior probability distributions were 

then converted to quantile dot plots using the 

ggdist package, and plots were generated using 

ggplot2.4,6,7 Dots within the plot were color coded 

for each analysis according to oft-cited “rules of 

thumb” for interpretation of results, using the 

following criteria:

▪ Structural validity: Bayesian comparative fit 

index (BCFI) and Bayesian Tucker–Lewis 

index (BTLI) ≥ 0.958 

▪ Internal consistency: Internal consistency 

was characterized as poor (< 0.50), moderate 

(0.50–0.75), good (0.75–0.90), and acceptable 

for clinical measures (> 0.90)9

▪ Convergent validity: Pearson correlation 

coefficients were evaluated by performance 

criteria as discriminant ( < 0.10), small (0.11–

0.30), medium (0.31–0.50), and acceptable 

(> 0.50)10

▪ Known-groups validity: Estimated mean 

Total Score differences were characterized for 

direction and magnitude of change in the 

expected direction11

Finally, results generated from a conventional 

psychometric workup utilizing frequentist methods 

were generated for each analysis to compare the 

results from each method. These results are 

represented by the mode for each plot.

Known-groups validity (Figure 4)

Conventional analysis results suggest positive monotonic ordering of estimated mean differences 

across PGIS strata

▪ Positive mean differences between adjacent strata of the PGIS order in the expected direction

▪ However, 40% of the mean score differences between the Mild and None response categories 

were negative. This COA likely cannot differentiate between these two severity strata

Convergent validity (Figure 3)

Co-validator 1:

▪ Conventional analysis results suggest a small magnitude correlation

▪ Probabilities: Discriminant: 38%; Small: 60%; Medium: 2%

▪ If it was hypothesized that this co-validator was closely aligned to the construct measured by 

COA, the probability of the correlation being potentially discriminant might be unacceptable

Co-validator 3:

▪ Conventional analysis results suggest a medium magnitude correlation

▪ Probabilities: Discriminant: 2%; Small: 48%; Medium: 54%; Large: 2% 

▪ Unlikely to be discriminant, but still not a large difference between likelihood of small versus 

medium correlation

Co-validator 5:

▪ Conventional analysis results suggest a large magnitude correlation

▪ Probabilities: Medium: 38%; Large: 62%

▪ Can more confidently report a large correlation

Internal consistency (Figure 2)

Conventional analysis results suggest good reliability (~0.75)

▪ Moderate reliability (0.50 – 0.75): 56% probability

▪ Good reliability (0.76 – 0.90): 44% probability

▪ The mode suggests good reliability. The variability around the conventional performance 

criteria is minimal (range is roughly 0.70 – 0.78) leading to more certainty about internal 

consistency of this COA

Figure 1: Posterior draws of model fit statistics

Figure 2: Posterior draws of reliability estimates

RESULTS

Figure 3: Posterior draws of correlation coefficients

Figure 4: Posterior draws of estimated mean differences

Each plot contains 50 dots. Each 

dot represents 2% probability. To 

determine the probability of each 

outcome, simply count the dots 

for each color and multiply by 2 

to achieve a percentage.

Results from a typical workup 

utilizing frequentist methods are 

represented by the mode for 

each plot (highest number of 

dots).

Structural validity (Figure 1)

Conventional analysis results suggest acceptable 

structural validity (BCFI and BTLI ≥ 0.95 )

▪ The probability that the BCFI and BTLI exceed 

the acceptable success threshold of ≥ 0.95 are 

90% and 52%, respectively

▪ The BTLI has a relatively high likelihood 

(specifically 48%) of not meeting acceptable 

performance criteria. Observing this outcome 

might prompt a non-expert to reassess the 

model's fit or prompt them to seek input from 

psychometricians to understand the reasons why 

the BTLI might be lower

Key: BCFI, Bayesian comparative fit index; BTLI, Bayesian Tucker–Lewis index.

Note: The quantile dot plot is based on 50 quantiles. Each dot represents 2% of the data distribution. Interpretive criteria 

adapted from Hu & Bentler (1988)8

Note: The quantile dot plot is based on 50 quantiles. Each dot represents 2% of the data distribution. Interpretive criteria 

adapted from Portney & Watkins (2009), with values less than 0.50 as poor, 0.50 to 0.75 as moderate, 0.75 to 0.90 as good, 

and above 0.90 as acceptable for clinical measures9

Note: The quantile dot plot is based on 50 quantiles. Each dot represents 2% of the data distribution. Interpretive criteria 

adapted from Cohen (1988)10

Note: The quantile dot plot is based on 50 quantiles. Each dot represents 2% of the data distribution. COA scores are scaled 

0 to 100. Interpretive criteria adapted from Hattie & Cooksey (1984)11
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