

Adjusting Utilities Using Age and Time-to-Death Decrements in Cost-Effectiveness Analyses: A Case Study in Relapsed and/or Refractory Multiple Myeloma

Wen Su¹, Max Clayson²

Bd Group

¹Amaris Consulting, London, United Kingdom; ²Amaris Consulting, Toronto, Canada.

✓ Log-logistic distribution was selected as base case for OS

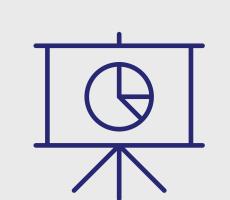
INTRODUCTION

- **Age-based utility norms** are often used to adjust health state utility values in cost-utility analyses (CUAs) with lifetime horizons to account for the declining quality-of-life (QoL) of individuals as they age¹. However, **time-to-death (TTD)** was found as a significant driver of QoL decline in previous researches as well².
- Versteegh et al (2022)³ reported that **TTD significantly impacts QALY gains**, especially in the longer-term survival period. And TTD is more associated with QALY gains than age.

OBJECTIVES

To compare the effect on QALYs when adjusting health state utilities based using TTD and age-based norms in a CUA for relapsed and/or refractory multiple myeloma (RRMM).

METHODS


Targeted literature review to inform the model specifications

- Among the indications assessed in Versteegh et al. (2022)^{3,} RRMM was selected for the case study.
- NICE TA897⁴ was chosen to replicate since its clinical and cost parameters, as well as results, were transparently reported.
- TA897 assessed the clinical and cost-effectiveness of **daratumumab combined with bortezomib and dexamethasone** (DBd) compared to bortezomib plus dexamethasone (Bd) in adult RRMM patients.

Cost utility analysis development

Time horizon Model structure

Life-time (30 years) Partitioned survival model

AE & Cost & Utility parameters

TA897⁴

• Sensitivity and scenario analyses were performed to identify when utility adjustment method had the largest impact.

Survival analysis

• Parametric survival functions were generated from **digitized KM curves of the CASTOR trial⁵** to fit and extrapolate survival curve.

O.75 Gompertz Iog-Logistic Iog-Normal Gamma Gen. Gamma

Utility adjustment

- TTD-based: The utility values for the general population of different age and gender were applied multiplicatively into the model.
- Age-based: The coefficient of TTD⁴ related to utility was utilized to calculate
 the disutility associated with different TTD periods during the model cycles and
 adjust progression-based utilities accordingly.

Time to death	Coefficients	Adjusted PFS utility	Adjusted PP utility	
0-3 months	-0.144	0.593	0.521	
3-6 months	-0.180	0.557	0.485	
6-12 months	-0.099	0.638	0.566	
12-18 months	-0.213	0.524	0.452	
18-24 months	-0.095	0.642	0.570	
24-36 months	-0.104	0.633	0.561	
36-48 months	-0.033	0.704	0.632	
48-60 months	-0.100	0.637	0.565	
> 60 months	-	0.737	0.665	

RESULTS

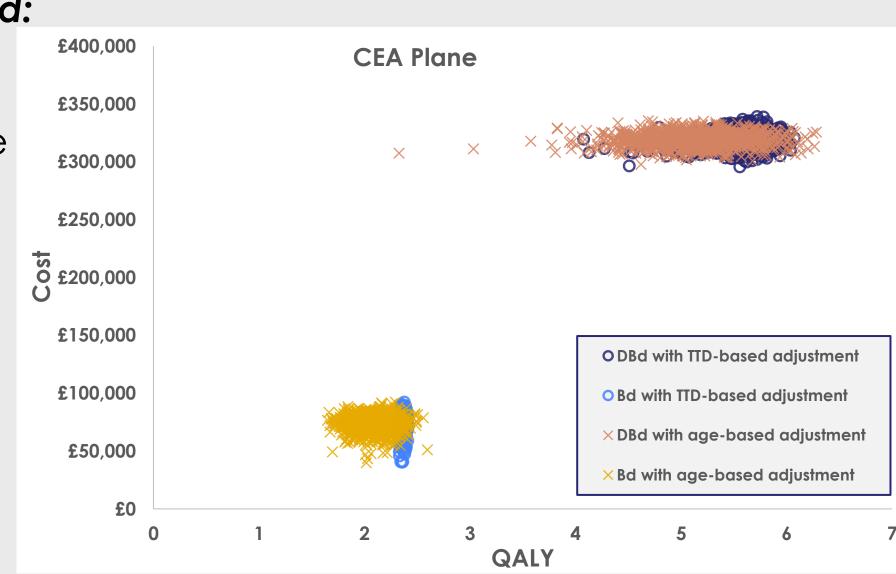
TTD-based adjustment delays the QoL decline when the survival time is extended

• Total **QALYs of DBd** with TTD-based adjustment were **higher** than QALYs with age-based adjustment, while the QALYs of **Bd were lower**.

		Age adjusted		TTD adjusted	
		DBd	Bd	DBd	Bd
Discounted QALY	QALY gain	5.233	2.110	5.260	1.888
	Incremental QALY		-3.123		-3.372
Discounted cost	Total cost	£319,557	£73,816	£319,557	£73,816
	Incremental cost		-£245,741		-£245,741
ICER	Per QALY	£78,687 £72		£72,884	

In all scenarios, incremental QALYs were higher with TTD adjustments, leading to

lower ICERs.


- When using the optimistic lognormal distribution to extrapolate DBd OS, the difference of incremental QALYs between adjustment approaches was 27.7% larger than the base case.
- The pessimistic Gompertz function reduced incremental QALYs between approaches.

	Age-based o	adjustment	TTD-based adjustment		
Scenarios	Incremental	ICER	Incremental	ICER	
	QALYs	(£/QALY)	QALYs	(£/QALY)	
Base case	-3.123	78,687	-3.372	72,884	
time horizon - 15 years	-2.438	98,773	-2.639	91,252	
Age - 85 years	-0.702	337,714	-0.884	268,039	
Age - 40 years	-3.26	75,410	-3.438	71,496	
PFS for Bd - Loglogistic	-3.121	78,523	-3.369	72,751	
OS for Bd - Loglogistic	-2.64	92,374	-2.848	85,422	
OS for DBd - Exponential	-2.854	85,766	-3.099	78,757	
OS for DBd - Lognormal	-3.369	73,214	-3.687	66,725	
OS for DBd - Weibull	-2.584	94,326	-2.782	87,370	
OS for DBd - Gompertz	-2.283	106,270	-2.441	99,141	
Legend: Small difference	n approaches)				

Probabilistic analysis highlighted:

 The probabilistic costeffectiveness plane was more convergent when TTD was chosen to adjust utility.

It suggested that the uncertainty of model with TTD-based adjustment was less than model with agebased adjustment.

LIMITATIONS & CONCLUSIONS

Limitations

- The sample size of Versteegh et al. (2022) was small which might lead to a large uncertainty of the coefficients.
- More scenario analysis including different clinical efficacy, indications, and other factors may impact on utility, are needed to improve the generalisability.

Conclusions

In a RRMM case study with a large survival difference between comparators,

- TTD-based health state utility adjustments increased incremental QALYs compared to age-based adjustments.
- The difference in incremental QALYs between approaches diminishes as survival benefit diminishes.

