The Impact of a Cost Savings Cap on the Cost Effectiveness of Valoctocogene Roxaparvovec for the **Treatment of Hemophilia A in the United States**

Sarker J¹, Tice JA², Herce-Hagiwara B³, Fahim SM³, Chu J², Agboola FO³, Pearson S³, Rind DM³, Walton S¹ 1. University of Illinois Chicago, Chicago, IL; 2. UCSF School of Medicine, San Francisco, CA; 3. Institute for Clinical and Economic Review, Boston, MA

OBJECTIVES

- Valoctocogene roxaparvovec (ValRox) is a new gene therapy for hemophilia A.
- The aim of this study was to assess the costeffectiveness of ValRox compared with emicizumab, in hemophilia A patients without inhibitors eligible for factor prophylaxis.
- As emicizumab has an annual acquisition cost exceeding \$600,000 in the US, we highlight in this assessment a scenario where the cost savings of ValRox were capped using an annual \$150,000/quality-adjusted life-years (QALYs) willingness to pay (WTP) threshold.

METHODS

- We developed a semi-Markov model to simulate a cohort of hemophilia A patients' costs and health outcomes (expressed in QALYs) from a healthcare sector perspective across a lifetime time horizon.
- The model structure was based on Pettersson scores (PS) where bleed rates determined transitions across PS.
- Factor VIII (FVIII) level projections and intervention durability were extrapolated using evidence from clinical trials, with all patients switching to emicizumab when FVIII levels fall below 1%.
- ValRox was associated with a small evidence based utility gain.
- The incremental cost per QALY gained and cost per bleed averted were the primary outcomes of interest.
- Scenario analyses followed the "High-Impact Single and Short-Term Therapies" framework developed by ICER
- To explore model uncertainty, we also performed deterministic and probabilistic sensitivity analysis.

Table 1: Model Inputs

Bleed rates	
Emicizumab (all cycle)	3
Treated joint bleed at factor level 0	2.52
Treated joint bleed at factor level 1	2.52
Treated joint bleed at factor level 2	2.52
Treated joint bleed at factor level 3	2.52
Treated joint bleed at factor level 4	1.42
Treated joint bleed at factor level 5	0.91
Treated joint bleed at factor level 6	0.78
Treated joint bleed at factor level 7	0.8
Treated joint bleed at factor level 8	0.76
Treated joint bleed at factor level 9	0.67
Treated joint bleed at factor level 10	0.48
Treated joint bleed at factor level 11	0.16
Treated joint bleed at factor level 41	0

Utility Input

Health stat Health state Health state Health stat Health stat Health state Per cycle ut Disutility of Disutility of

Cost Inputs

Cost of Valo First cycle c Per cycle co Per bleed F\ Per bleed no Per bleed no Per cycle ar Cost of surg Societal cos Adverse eff Adverse eff

Figure 2: Projected Factor VIII Levels Across Cycle

LS	
e utility at age <30 and PS 0	0.94
e utility at age <30 and PS 1-27	0.82
e utility at age <30 and after surgery	0.71
e utility at age 30-40 and PS 0	0.840
e utility at age 30-40 and PS 1-28	0.740
e utility at age 30-40 and after surgery	0.648
e utility at age 40-50 and PS 0	0.86
e utility at age 40-50 and PS 1-28	0.690
e utility at age 40-50 and after surgery	0.60
e utility at age 50-60 and PS 0	0.83
e utility at age 50-60and PS 1-28	0.63
e utility at age 50-60and after surgery	0.55
e utility at age \geq 60 and PS 0	0.73
e utility at age \geq 60 and PS 1-28	0.540
e utility at age \geq 60 and after surgery	0.482
tility gain in gene therapy arm	0.012
bleeding in a nontarget joint (per cycle)	0.002
bleeding in a target joint (per cycle)	0.003

ctocogene Roxaparvovec	\$2,809,375
cost of Emicizumab	\$349,620
st of Emicizumab	\$303,004
VIII cost	\$7,371
on-drug cost (18-45years)	\$4,914
on-drug cost (45+ years)	\$7,319
thropathy cost (PS14-28)	\$660
jery	\$47,720
st per bleed	\$1,235
ect cost (prednisolone)	\$11
ect cost (Higher AE cost)	\$2,213

RESULTS

Table 2: Base case results

	Valoctocogene roxaparvovec	Emicizumab	ICERs
Total Drug Cost	\$14,282,000	\$18,023,000	Dominant
Total Cost	\$14,720,000	\$18,624,000	Dominant
Bleeds	171	177	\$650,742
QALYs	19.64	19.54	Dominant
LYs	27.13	27.13	-
evLYs	19.64	19.54	Dominant

QALYs = Quality Adjusted Life Years, Lys = Life Years, evLYs = Equal Value Life Years

Table 3: QALY-Based Threshold Analysis Results for Valoctocogene roxaparvovec

	Unit Price	Unit Price to	Unit Price to	Unit Price to
	to Achieve	Achieve	Achieve	Achieve
Treatment	\$50,000	\$100,000	\$150,000	\$200,000
	per QALY	per QALY	per QALY	per QALY
	Gained	Gained	Gained	Gained
\$150,000 Cap	¢1 961 000	¢1 966 000	¢1 971 000	¢1 976 000
Scenario	φ1,901,000	φ1,900,000	φ1,971,000	φ1,970,000
Shared Savings	¢3 560 000	¢3 565 000	¢3 570 000	¢3 576 000
(50:50)	φ3,300,000	φ3,303,000	Ψ , , , , , , , , , , , , , , , , , , ,	φ3,370,000
No Savings*	\$334,000	\$339,000	\$344,000	\$349,000
Full Cost-Offset Analysis	\$6,901,000	\$6,907,000	\$6,913,000	\$6,918,000

Figure 3: Tornado diagram of incremental cost for Valoctocogene rovanaryovoc ve Emicizumah

roxaparvovec vs Emicizumab					
Model Input	-\$6,000,000	-\$5,000,000	-\$4,000,000	-\$3,000,000	-\$2,000,000
Per cycle cost of Emicizumab					-
Cost of Valoctocogene Roxaparvovec					
Emicizumab total treated bleeds proportion (of all bleeds)					
Emicizumab treated target joint bleed proportion (of all bleeds)					
Emicizumab treated non target bleed proportion (of all bleeds)					
Emicizumab all bleeds					
Emicizumab treated all joint bleed proportion (of all bleeds)			- 1	Minimu	m Cost
First cycle cost of Emicizumab			1	Maximu	um Cost
Treated joint bleed at factor level 2			1		
Treated joint bleed at factor level 3			I.		
				- k	

roxaparvovec vs Emicizumab

Model Input
Per cycle utility gain in gene therapy arm
Emicizumab total treated bleeds proportion (of all bleeds)
Emicizumab all bleeds
Emicizumab treated target joint bleed proportion (of all bleeds)
Emicizumab treated target joint bleed proportion (of all bleeds)
Emicizumab treated non target bleed proportion (of all bleeds)
Emicizumab treated non target bleed proportion (of all bleeds)
Emicizumab treated all joint bleed proportion (of all bleeds)
Treated joint bleed at factor level 2
Treated joint bleed at factor level 3

Presented at ISPOR 2024, Atlanta. GA May 7, 2024

Figure 4: Tornado diagram of incremental QALY for Valoctocogene

RESULTS (CONT.)

 ValRox priced at \$2.8M was associated with a lifetime QALY gain of 0.1 and cost savings of \$3.9 million in a conventional model.

• When we capped the cost offset attributed to emicizumab displacement at \$150,000/year, the cost-effectiveness ratio rose to \$8.2million/QALY.

• At a WTP of \$150,000 per QALY, the value-based price using the \$150,000 cost cap was \$1,971,000.

Table 3: Non-SST Scenario Analysis Results Scenario

Extending duration of disutility from block 7 full days from 2 full days and 5 half c Doubling the bleed rates for patients w

arthropathy across all treatments.

A scenario where patients enter at the 40 and with a PS of 20.

Scenario where surgery returns patient of 20.

Scenario where all patients switch at a level of 5 IU/ml.

Scenario with high AE cost in cycle 1.

Table 4: SST Scenario Analysis Results

Scenario

Shared savings in which 50% of lifetim health care cost offsets from ValRox ar assigned to the health care system inst being assigned entirely to the gene the Cost-offset cap in which health care co offsets generated by ValRox are capped \$150,000 per year.

Optimistic assumptions regarding the I of treatment (capped projected bleeds 5% factor level)

Conservative assumptions regarding th benefit of treatment (linear projected of in factor levels)

Zero net savings.

CONCLUSION

- This is the first model comparing the cost-effectiveness of ValRox versus emicizumab.
- The \$150,000 per year cost cap was highly influential in projecting the cost-effectiveness of ValRox as well as in determining a value based price.

	Cost/QALY
eeds to	Dominant
Jays.	
vith	Dominant
age of	Dominant
ts to PS	Dominant
factor	Dominant
	Dominant

	Cost/QALY
ne	
re	Dominant
tead of	Dominant
erapy.	
ost	
d at	\$8,246,000
benefit	
at the	Dominant
ne	
decline	Dominant
	\$23,954,000

