Cost-Effectiveness Analysis of Infliximab versus Cyclosporine in Steroid-Refractory Acute Severe Ulcerative Colitis

Jonathan Luong, PharmD Candidate

University of Washington School of Pharmacy, Seattle, WA

Background

- Acute severe ulcerative colitis (ASUC) affects 25% of all ulcerative colitis (UC) patients, requiring hospitalization and treatment with intravenous steroids¹
- In ASUC cases that are steroid-refractory, infliximab (INFLX) or cyclosporine (CsA) are indicated to induce remission, with the goal of therapy being avoidance of colectomy²
- There are no recent cost-effectiveness analyses comparing these two agents from a United States payer perspective utilizing data from multiple clinical trials³

Objective

• Estimate the cost-effectiveness of infliximab compared with cyclosporine for steroidrefractory ASUC in U.S. adults from a commercial payer perspective

Methods

- A decision tree was constructed (Figure 1; Table 1).
- Probability, cost, and utility inputs were derived from publicly available literature and resources (Table 2). Cost and utility were discounted at a 3% annual rate.
 - The main outcome measure was incremental cost per quality-adjusted life year (QALY) gained
 - For each annual time step, patients could remain in remission or undergo colectomy, with possible complications and death associated with colectomy
- Uncertainty was assessed through a one-way deterministic sensitivity analysis and scenario analysis.
 - Scenario 1: One year timeframe
 - Scenario 2: Two year timeframe
 - Scenario 3: Use of an infliximab biosimilar (infliximab-dybb)

Population	Adults hospitalized with steroid- refractory ASUC		
Comparators	Infliximab vs. cyclosporine		
Perspective	U.S. commercial payer		
Time Horizon	3 years		

TABLE 1: Summary of Key Model Characteristics

Methods (Cont.)

FIGURE 1: Decision Tree Model

TABLE 2: Summary of Key Model Inputs

Probabilities			
Infliximab 3 year colectomy-free survival ⁴	0.955		
Cyclosporine 3 year colectomy-free survival ⁴	0.939		
UC colectomy complication (early/chronic pouchitis) ⁵	0.213 / 0.155		
UC colectomy death (emergent/elective) ⁶	0.115 / 0.004		
Mean Annual Costs (2023 US\$)			
Infliximab total drug cost (base/biosimilar) 7,8	\$4,194 / \$2,044		
Cyclosporine total drug cost ^{7,8,9}	\$1,557		
Colectomy ¹⁰	\$41,400 ¹⁰		
Management of early complications ⁵	\$1,2056		
Management of chronic pouchitis ¹¹	\$21,873		
Management in clinical remission and post colectomy ¹²	\$5,153		
Utilities			
1 year of remission ¹³	0.81		
1 year of post-colectomy ¹⁴	0.79		
1 year of post-colectomy with early complications ¹⁵	0.49		
1 year of post-colectomy with pouchitis ¹⁵	0.40		

Results

TABLE 3: Base Case Results

	INFLX	CsA	Incremental Value
Cost	\$33,756	\$36,754	-\$2,989
Utility (QALY)	2.086	2.033	0.052
ICER (\$/QALY)		CsA is dominate	d

TABLE 4: Scenario Analysis Results

Scenario 1		INFLX	CsA	Incremental Value
	Cost	\$17,721	\$22,230	-\$4,502
	Utility (QALY)	0.739	0.800	-0.060
	ICER (\$/QALY)	\$74,789		
Scenario 2	Cost (\$)	\$27,558	\$29,984	-\$2,424
	Utility (QALY)	1.434	1.614	-0.180
	ICER (\$/QALY)	\$13,438		
Scenario 3	Cost (\$)	\$31,614	\$36,754	-\$5,139
	Utility (QALY)	2.086	2.033	0.052
	ICER (\$/QALY)	CsA is dominated		

FIGURE 2: One-way Deterministic Sensitivity Analysis

Key Takeaways

INFLX dominated CsA in the base case and the third scenario, and was found to be cost-effective in all scenarios based on a \$150,000 USD willingness-to-pay.

Results were most sensitive to utility derived from disease remission and the post-colectomy state. as well as medication and colectomy costs.

Though INFLX was found to be less costly due to higher probability of colectomy-free survival, payoff from increased survival and accrual of QALYs was not observed until the **third** year post-treatment

Limitations

- Heterogeneity in study design and maintenance regimens
- Inputs were derived from studies in which differences in maintenance therapy were not accounted for and heterogenous

References

- 1. Du L, Ha C. Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterol Clin North Am. 2020;49(4):643-654. doi:10.1016/j.gtc.2020.07.005
- 2. Burri E, Maillard MH, Schoepfer AM, et al. Treatment Algorithm for Mild and Moderate-to-Severe Ulcerative Colitis: An Update. *Digestion*. 2020;101 Suppl 1:2-15. doi:10.1159/000504092 3. Alam MF, Longo M, Cohen D, et al. Infliximab versus ciclosporin in steroid resistant acute severe
- ulcerative colitis: a model-based cost-utility analysis of data from CONSTRUCT pragmatic trial. BMC Health Serv Res. 2023;23(1):226. Published 2023 Mar 8. doi:10.1186/s12913-023-09233-w 4. Szemes K, Soós A, Hegyi P, et al. Comparable Long-Term Outcomes of Cyclosporine and
- Infliximab in Patients With Steroid-Refractory Acute Severe Ulcerative Colitis: A Meta-Analysis Front Med (Lausanne). 2020;6:338. Published 2020 Jan 21. doi:10.3389/fmed.2019.00338 Zogg CK, Najjar P, Diaz AJ, et al. Rethinking Priorities: Cost of Complications After Elective Colectomy. Ann Surg. 2016;264(2):312-322. doi:10.1097/SLA.000000000001511
- Hajirawala L, Leonardi C, Orangio G, Davis K, Barton J. Urgent Inpatient Colectomy Carries a Higher Morbidity and Mortality Than Elective Surgery. J Surg Res. 2021;268:394-404. doi:10.1016/j.jss.2021.06.081
- 7. CMS. Payment Allowance Limits for Medicare Part B Drugs Effective through October 31, 2023. 2023; https://www.cms.gov/apps/ama/license.asp?file=https%3A//www.cms.gov/files/zip/October-2023- asp-pricing-file.zip. Accessed November 13, 2023. 8. CMS. Physician Fee Schedule. 2023; https://www.cms.gov/apps/physician
- feeschedule/overview.aspx. Accessed November 13, 2023.
- IBM Micromedex RedBook. 2023. Accessed November 13, 2023. 10. Xu F, Liu Y, Wheaton AG, Rabarison KM, Croft JB. Trends and Factors Associated with lospitalization Costs for Inflammatory Bowel Disease in the United States. Appl Health Econ
- Health Policy. 2019;17(1):77-91. doi:10.1007/s40258-018-0432-4 11. Barnes EL, Kappelman MD, Zhang X, Long MD, Sandler RS, Herfarth HH. Patients With Pouchitis Demonstrate a Significant Cost Burden in the First Two Years After Ileal Pouch-Anal
- Anastomosis. Clin Gastroenterol Hepatol. 2022;20(12):2908-2910.e2. 12. Cohen R, Skup M, Ozbay AB, et al. Direct and indirect healthcare resource utilization and costs associated with ulcerative colitis in a privately-insured employed population in the US, J Med
- Econ. 2015;18(6):447-456. doi:10.3111/13696998.2015.1021353 13. Gibson PR, Vaizey C, Black CM, et al. Relationship between disease severity and quality of life and assessment of health care utilization and cost for ulcerative colitis in Australia: a cross sectional, observational study. J Crohns Colitis. 2014;8(7):598-606.
- doi:10.1016/j.crohns.2013.11.017 14. Brown C, Gibson PR, Hart A, et al. Long-term outcomes of colectomy surgery among patients with ulcerative colitis. Springerplus. 2015;4:573. Published 2015 Oct 5. doi:10.1186/s40064-015-
- 15. Arseneau KO, Sultan S, Provenzale DT, et al. Do patient preferences influence decisions on treatment for patients with steroid-refractory ulcerative colitis?. Clin Gastroenterol Hepatol. 2006;4(9):1135-1142. doi:10.1016/j.cgh.2006.05.003