Association Between Classes of Antidiabetic Medications and Their Potential Risk or Protective Effects on **Cancer: A Network Meta-Analysis of Observational Studies** Ahmed S. Kenawy¹, MSc; Yi-Shao Liu¹, PhD candidate; Ayobami A. Aiyeolemi¹, B.Pharm; Godwin Okoye¹, M.S; Chanhyun Park¹, PhD.

¹Health Outcomes Division, College of Pharmacy, The University of Texas at Austin, TX, USA

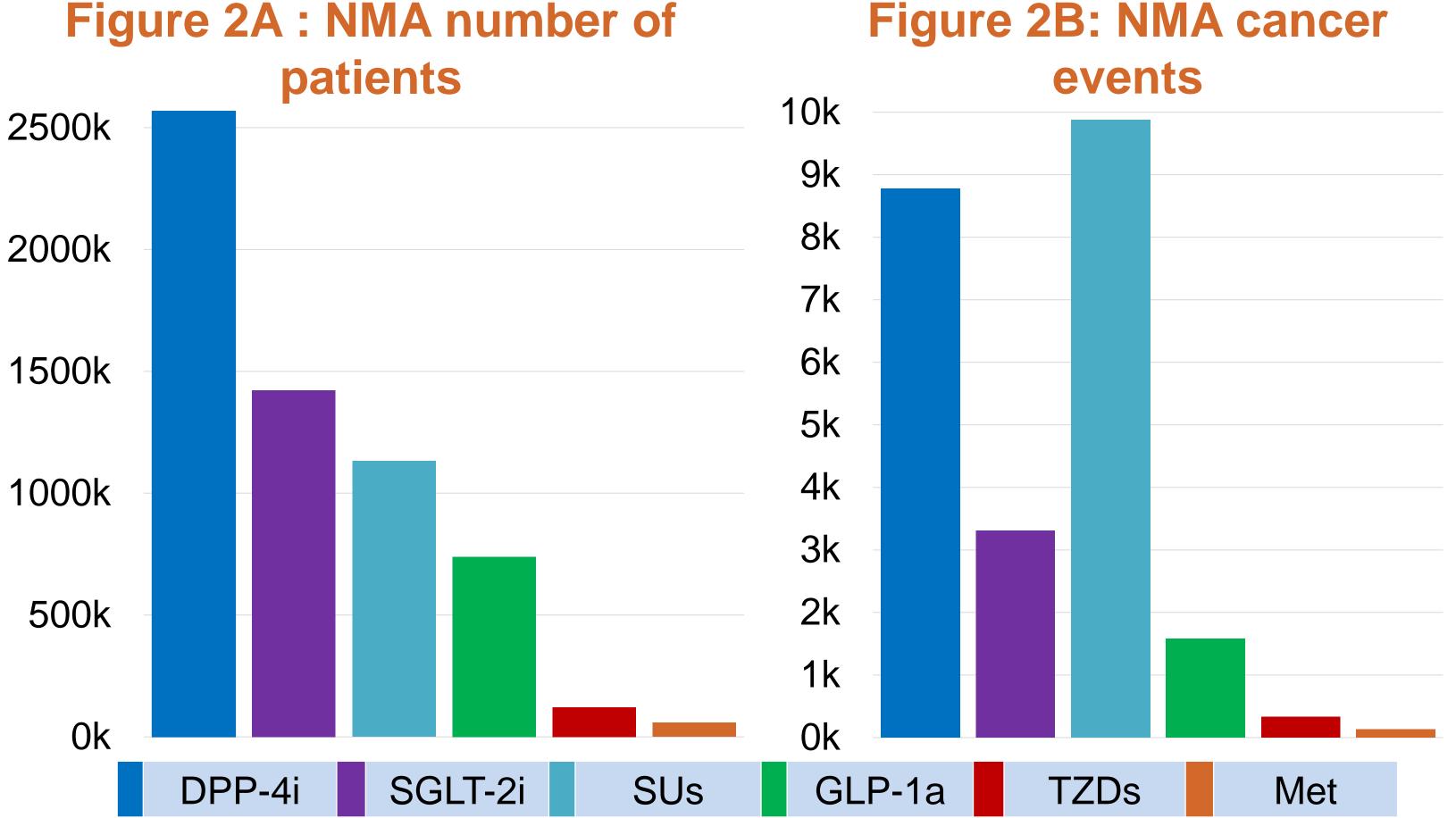
Introduction

- The mainstay of diabetes treatment is the use of antidiabetic medications, particularly novel antidiabetics that showed promising results in reducing short and long-term diabetes complications.¹
- Reviews of short-term randomized clinical trials (RCTs) did not indicate an increased risk of cancer with the use of novel antidiabetics.²
- The aim of this network meta-analysis (NMA) is to compare the potential cancer risks or protective effects associated with these novel antidiabetic medications, based on observational studies.

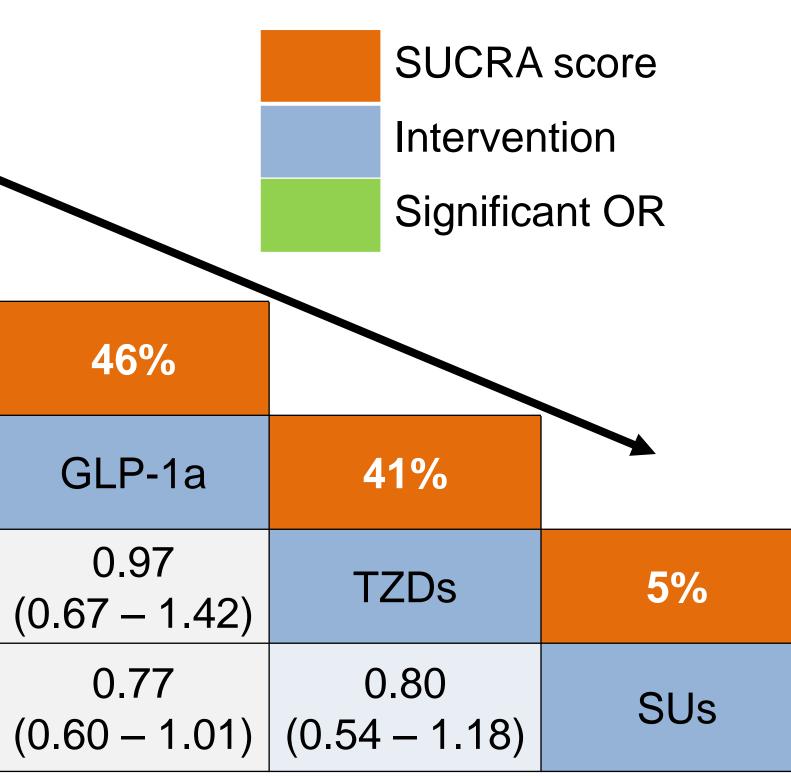
,		
Methods		
Systematic Review		
Registration / Reporting	 PROSPERO (CRD42023469 The Preferred Reporting Item Systematic Reviews and Meta (PRISMA).³ 	
Databases	 PubMed, Web of Science, an until November 15th, 2023. 	
Inclusion criteria	 Comparative observational (revidence) studies with cancer Have at least one novel antidintervention arm, including so cotransporter-2 inhibitors (SG dipeptidyl peptidase-4 inhibitor and glucagon-like peptide-1 at 1a). 	
Exclusion criteria	 Non-human research, RCTs, case series, reviews, systema and MA. 	
Network Meta-Analysis (NMA)		
NMA comparators	 Metformin (Met), Sulfonylurea Thiazolidinediones (TZDs). 	
Bias and Quality assessment	 Risk Of Bias In Non-randomiz of Interventions (ROBINS-I).⁴ The New Castle–Ottawa Scal 	
Certainty of evidence	 Grading of recommendations development, and evaluations 	
NMA inclusion criteria	 Cohort studies that reported or incidence and sample size. 	
NMA model	 Random-effects model with ir priors (Bayesian framework). 	
NMA estimate	 Pooled odds ratio (OR) with 9 intervals (CrI). 	
NMA analysis	 WinBUGS 1.4.3. NetMetaXL 1.6.1.⁶ 	

- 9941). ns for ta-Analyses
- nd CINAHL
- real-world r as outcome. liabetic in the odium-glucose **GLT-2i**), ors (**DPP-4i**), agonists (GLP-
- case studies, atic reviews,

eas (SUs), and


- zed Studies -
- ale (NOS).
- assessment, ns (GRADE).⁵
- cancer
- nformative 95% credible

- 62 observational studies (53 cohort and 9 case-control) were included in the systematic review.
- 22 studies (37 comparisons) with 6,041,368 patients and 24,017 events met the inclusion criteria of our NMA.
- SGLT-2i were likely to reduce the overall cancer risk compared to sulfonylureas (OR:0.54; 95%Crl: 0.40 – 0.74, low certainty), GLP-1a (OR:0.70; 95%Crl: 0.53 – 0.92, low certainty), and DPP-4i (OR:0.72; 95%Crl: 0.57 – 0.92, very low certainty).
- DPP-4i were associated with a lower risk of cancer compared to sulfonylureas (OR:0.76; 95%Crl: 0.60 – 0.96, low certainty).
- SGLT-2i had the highest probability of being the safest (SUCRA= 0.97), followed by metformin (SUCRA= 0.58) and DPP-4i (SUCRA= 0.53). Sulfonylureas had the lowest probability of being the safest, with a SUCRA score of 0.05.
- Most of the studies (93.5%, n=58) were high quality, and (50%, n=31)had a low or medium risk of bias.


Figure 1 : League table of the overall risk of cancer

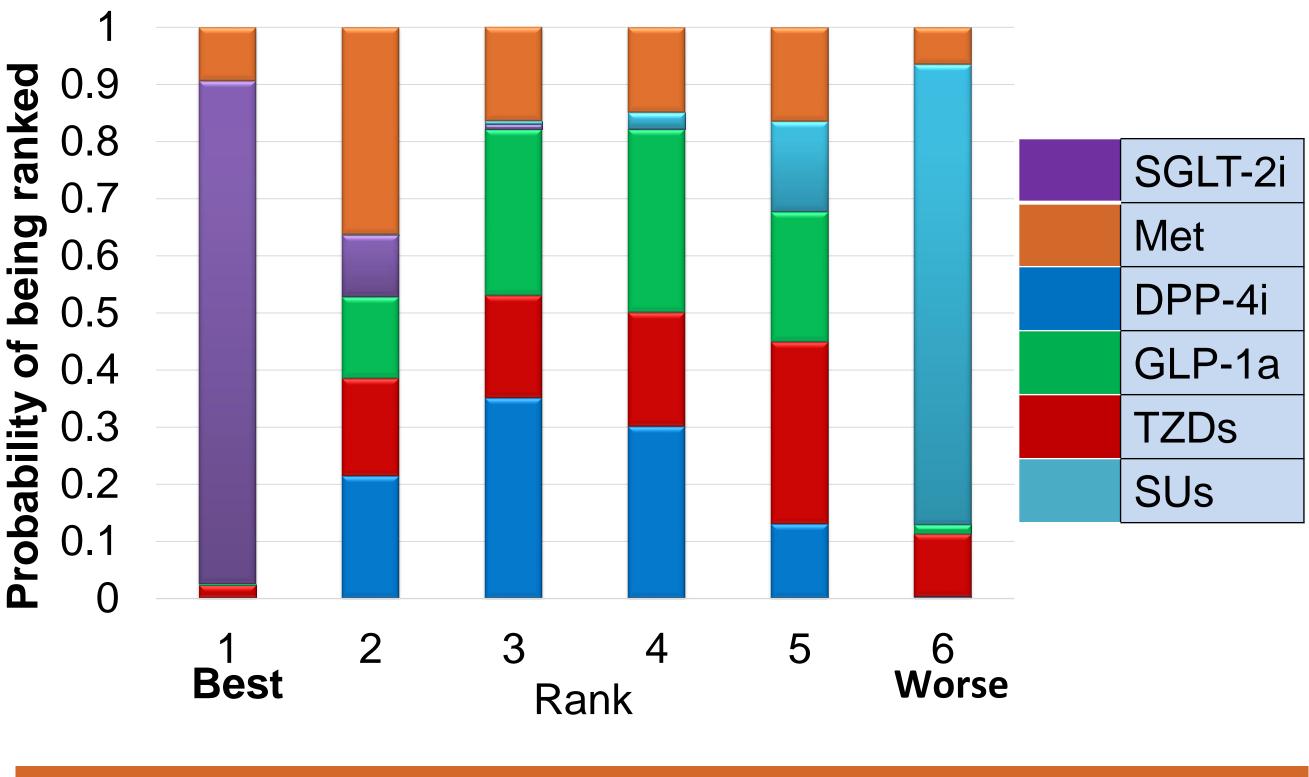

97%		
SGLT-2i	58%	
0.75 (0.47 – 1.17)	Metformin	53%
0.72 (0.57 – 0.92)	0.96 (0.63 – 1.47)	DPP-4i
0.70 (0.53 – 0.92)	0.93 (0.61 – 1.42)	0.97 (0.76 – 1.24)
0.67 (0.46 – 1.00)	0.90 (0.54 – 1.52)	0.94 (0.67 – 1.33)
0.54 (0.40 – 0.74)	0.72 (0.46 – 1.13)	0.76 (0.60 – 0.96)

Figure 2A : NMA number of patients

Results

- disease.²
- studies.⁴
- inconclusive findings.
- GLP-1a, and DPP-4i.

¹Mazin et al. J Clin Med. (2022) 11(7): 1904. ²Tang et al. Diabetologia (2017) 60:1862–1872. ³Brown et al. Systematic Reviews (2014) 3:110. ⁵Izcovich et al. BMJ (2023) 381:e074495. ⁴Sterne et al. BMJ (2016) 355:i4919. ⁶Page et al. BMJ (2021) 372:n71. ⁷Basak et al. Biomedicines (2023) 11(7): 1867

CO2

Figure 3: Random effect (Informative) Rankogram

Discussion

• Our results align with the histological evidence that reported the effect of SGLT-2i in eliminating tumor cells.⁷ • Previous reviews of RCTs did not conclude a protective effect of SGLT-2i, probably because they used short-term follow-up data and included other users of SGLT-2i, including patients with heart failure and chronic kidney

 Insufficient control over important confounders and absence of appropriate comparators downgraded the bias and quality assessments for most of the included

• Future research should focus on head-to-head comparisons among these antidiabetics to avoid

• These results could influence clinical practice by guiding medication choices with a focus on patient safety.

Conclusion

SGLT-2 inhibitors are associated with protective effects against developing cancer compared to sulfonylureas,

• Further studies are needed to explore the mechanisms behind this observed association.

References

