# Machine Learning Approaches to Reduce Economic Impact of Effective Interventions

Poster # HTA51 Kaiser Permanente

Research

Aniket A. Kawatkar, PhD MS1; Aileen S. Baecker, PhD1; Rita F. Redberg, MD MSc2; Ming-Sum Lee, MD PhD3; Maros Ferencik, MD PhD MCR4; Steve Goodacre, PhD5; Praveen Thokala, PhD<sup>5</sup>; Adam L. Sharp, MD MS<sup>1</sup>; Benjamin C. Sun, MD MPP<sup>6</sup>

#### Background

- · Professional guidelines recommend noninvasive cardiac testing (NIT) within 72 hours after an emergency department (ED) evaluation for suspected acute coronary syndrome (ACS), after acute myocardial infarction (AMI) has been excluded
- Our economic evaluation found use of NIT to be cost-effective (<\$6,000/QALY)
- However, even cost-effective interventions face challenges in terms of adoption if the upfront economic costs are high due to a large target population
- . If early NIT is adopted as standard of care in the 8 million annual suspected ACS cases in the US, direct medical expenditure could increase by nearly \$35 billion annually

## **Objective**

· Hence, we explore if machine learning algorithms can be developed to identify features that classify patients most likely at risk of death or acute myocardial infarction (MI) especially in those with pre-test lowrisk

#### Methods

- We used a retrospective cohort study design within the adult ED patient population in whom MI was ruled out, belonging to Kaiser Permanente Southern California integrated healthcare delivery system
- · We included ED patients with pre-test lowrisk based on HEART risk score and followed them up to 1-year post ED discharge

## Methods (Continued)

- · We compared the effectiveness of early NIT vs. no early testing, using confounder adjusted propensity score models and instrumental variables models to evaluate the marginal effect of early NIT
- . The number needed to treat (NNT) was calculated as the inverse of the absolute composite risk reduction in death/AMI
- · We used least absolute shrinkage and selection operator (LASSO) techniques to reduce the large number of baseline sociodemographic, cardiac and non-cardiac conditions that could be features classifying death/MI risk (Table 1)
- · We then used k-fold Classification and Regression Tree Analysis (CART) to identify the most important factors that contribute to the risk of future MI/death

- The cohort included 106,478 patients [mean age 53 (±15) years; female 58%]
- The unadjusted composite outcome of death/non-fatal MI was 2.8% vs 1.1% in the No-NIT and NIT arm respectively
- CART analysis (Fig. 1) identified age above 65 followed by elevated troponin as the most important factors for future MI/death. Peripheral vascular disease and female sex were identified as important features ahead of CAD and CHF

| Table 1. Descriptive St         | 1. Descriptive Statistics of the Conort by N11 |               |  |  |  |
|---------------------------------|------------------------------------------------|---------------|--|--|--|
|                                 | No NIT                                         | NIT           |  |  |  |
|                                 | (N=101347)                                     | (N=5131)      |  |  |  |
| Age at ED, Mean (SD)            | 52.4 (15.58)                                   | 55.1 (11.37)  |  |  |  |
|                                 |                                                |               |  |  |  |
| emale, n (%)                    | 59509 (58.7%)                                  | 2730 (53.2%)  |  |  |  |
|                                 |                                                |               |  |  |  |
| Vhite Race, n (%)               | 54726 (54.0%)                                  | 2759 (53.8%)  |  |  |  |
| (1.1)                           |                                                | ,             |  |  |  |
| moking Status, n (%)            |                                                |               |  |  |  |
| Active                          | 6352 (6.3%)                                    | 291 (5.7%)    |  |  |  |
| Never                           | 65519 (64.6%)                                  | 3437 (67.0%)  |  |  |  |
| Passive                         | 584 (0.6%)                                     | 14 (0.3%)     |  |  |  |
| Quit                            | 23940 (23.6%)                                  | 1240 (24.2%)  |  |  |  |
|                                 |                                                | 12.0 (2.12.1) |  |  |  |
| Obese, n (%)                    | 42028 (41.5%)                                  | 2234 (43.5%)  |  |  |  |
| , Desc, II (70)                 | 12020 (11.570)                                 | 2231(13.374)  |  |  |  |
| IEART History, n (%)            |                                                |               |  |  |  |
| Slightly suspicious             | 95627 (94.4%)                                  | 3916 (76.3%)  |  |  |  |
| Moderately suspicious           | 5573 (5.5%)                                    | 1130 (22.0%)  |  |  |  |
| Highly suspicious               | 147 (0.1%)                                     | 85 (1.7%)     |  |  |  |
| riigniy suspicious              | 147 (0.1%)                                     | 03 (1.7%)     |  |  |  |
| HEART ECG, n (%)                |                                                |               |  |  |  |
| Normal                          | 05025 (02.00/)                                 | 4126 (00 40/) |  |  |  |
|                                 | 85035 (83.9%)                                  | 4126 (80.4%)  |  |  |  |
| Non-specific repolarization     | 16225 (16.0%)                                  | 986 (19.2%)   |  |  |  |
| changes                         |                                                |               |  |  |  |
| Significant ST deviation        | 87 (0.1%)                                      | 19 (0.4%)     |  |  |  |
|                                 |                                                |               |  |  |  |
| IEART Age, n (%)                |                                                |               |  |  |  |
| Less than 45 years              | 32080 (31.7%)                                  | 928 (18.1%)   |  |  |  |
| Between 45 to 64 years          | 48749 (48.1%)                                  | 3347 (65.2%)  |  |  |  |
| Age 65 and above                | 20518 (20.2%)                                  | 856 (16.7%)   |  |  |  |
|                                 |                                                |               |  |  |  |
| HEART Risk, n (%)               |                                                |               |  |  |  |
| No Risk factors                 | 33986 (33.5%)                                  | 1093 (21.3%)  |  |  |  |
| 1-2 Risk Factors                | 60777 (60.0%)                                  | 3551 (69.2%)  |  |  |  |
| 3 or More Risk factors or       | 6584 (6.5%)                                    | 487 (9.5%)    |  |  |  |
| Atherosclerotic disease         |                                                |               |  |  |  |
|                                 |                                                |               |  |  |  |
| nitial Troponin, n (%)          |                                                |               |  |  |  |
| Normal                          | 100260 (98.9%)                                 | 4986 (97.2%)  |  |  |  |
| 1-3 times Normal limit          | 990 (1.0%)                                     | 127 (2.5%)    |  |  |  |
| More than 3-times normal        | 97 (0.1%)                                      | 18 (0.4%)     |  |  |  |
| limit or higher                 |                                                |               |  |  |  |
| Clinical Characteristics and    |                                                |               |  |  |  |
| Comorbidities                   |                                                |               |  |  |  |
| CAD, n (%)                      | 5468 (5.4%)                                    | 283 (5.5%)    |  |  |  |
| Stroke, n (%)                   | 2342 (2.3%)                                    | 56 (1.1%)     |  |  |  |
| CABG in year prior to ED        | 87 (0.1%)                                      | 5 (0.1%)      |  |  |  |
| admission, n (%)                | 07 (0.170)                                     | 3 (0.170)     |  |  |  |
|                                 | 222 (0.20()                                    | 16 (0.20/)    |  |  |  |
| PTCA in year prior to ED        | 223 (0.2%)                                     | 16 (0.3%)     |  |  |  |
| admission, n (%)                | 22712 (22.20                                   | 1001 (26 87)  |  |  |  |
| Family history of CAD, n (%)    | 32712 (32.3%)                                  | 1881 (36.7%)  |  |  |  |
| Family history of stroke, n (%) | 21413 (21.1%)                                  | 1058 (20.6%)  |  |  |  |
|                                 |                                                |               |  |  |  |
| Elixhauser Comorbidity Index,   | 2.8 (2.49)                                     | 2.4 (2.13)    |  |  |  |
| Mean (SD)                       |                                                |               |  |  |  |
|                                 |                                                |               |  |  |  |

| Background                                                                          | Methods (Continued)                                                               | Table 1. Descriptive Statistics of the Cohort by NIT |                             | Table 2. Difference in Risk Associated with Early NIT and Number Needed to Treat          |                                                                                                                                                                                                     |                                  |                               |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|
| Professional guidelines recommend non-                                              | We compared the effectiveness of early                                            |                                                      | No NIT<br>(N=101347)        | NIT<br>(N=5131)                                                                           | Statistical Model*                                                                                                                                                                                  | Risk Difference<br>Mean (95% CI) | Number Needed to<br>Treat NNT |
| invasive cardiac testing (NIT) within 72                                            | NIT vs. no early testing, using confounder                                        | Age at ED, Mean (SD)                                 | 52.4 (15.58)                | 55.1 (11.37)                                                                              | IPW                                                                                                                                                                                                 | -1.54%                           | 65                            |
| hours after an emergency department (ED)<br>evaluation for suspected acute coronary | adjusted propensity score models and<br>instrumental variables models to evaluate | Female, n (%)                                        | 59509 (58.7%)               | 2730 (53.2%)                                                                              | Multivariable Logistic Regression                                                                                                                                                                   | (-1.95% to -1.12%)<br>-1.62%     | 62                            |
| syndrome (ACS), after acute myocardial                                              | the marginal effect of early NIT                                                  | White Race, n (%)                                    | 54726 (54.0%)               | 2759 (53.8%)                                                                              | Multivariable Probit Regression                                                                                                                                                                     | (-2.30% to -0.95%)<br>-1.32%     | 76                            |
| infarction (AMI) has been excluded                                                  | The number needed to treat (NNT) was                                              | Smoking Status, n (%) Active                         | 6352 (6.3%)                 | 291 (5.7%)                                                                                | IPWRA                                                                                                                                                                                               | (-1.92% to -0.72%)<br>-1.38%     | 72                            |
| Our economic evaluation found use of NIT to be cost-effective (<\$6,000/QALY)       | calculated as the inverse of the absolute                                         | Never Passive                                        | 65519 (64.6%)<br>584 (0.6%) | 3437 (67.0%)<br>14 (0.3%)                                                                 | AIPW                                                                                                                                                                                                | (-1.81% to -0.95%)<br>-1.36%     | 73                            |
| However, even cost-effective interventions                                          | composite risk reduction in death/AMI     We used least absolute shrinkage and    | Quit                                                 | 23940 (23.6%)               | 1240 (24.2%)                                                                              | GMM1V^                                                                                                                                                                                              | (-1.82% to -0.90%)<br>-5.17%     | 19                            |
| face challenges in terms of adoption if the                                         | Obese, n (%)                                                                      | 42028 (41.5%)                                        | 2234 (43.5%)                | IPW. Inverse Probability of Weighting, IPWRA: IPW with regression adjustment (doubly robe | (-6.86% to -3.47%) ust); AIPW. IPW with an sugmentation term (doubly robust); GMM IV. Generalized method of                                                                                         | noment instrument variables      |                               |
| upfront economic costs are high due to a                                            | HEART History, n (%)                                                              |                                                      |                             |                                                                                           | of treatment probability models where receipt of early NIT was modelled as a logit function of a<br>c. past history of CABG or PCI, family history of CAD, family history of stroke, arrythmia, CHF |                                  |                               |

#### Figure 1. CART Analysis based Decision Tree using subset of features selected by LASSO Regression



#### Conclusion

· We implemented machine learning techniques to further classify low-risk patients using smaller set of clinical features & created a decision tree. Our findings may help improve economic and clinical efficiency of use of NIT