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Background Methods (Continued) Statistics of the Cohort by NIT Table 2. Difference in Risk Associated with Early NIT and Number Needed to Treat
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rroles : ! >nd non- = We compared the effectiveness of early (N=101347) (N=5131) Mean (95% CI) Treat NNT
invasive cardiac testing (NIT) within 72 NIT vs. no early testing, using confounder 52.4(15.58) 55.1(11.37) : 95;.54“/;, . 65
hours aﬁer an emergency department (ED) adjusted propensity score models and SRR ) TR ) (o -f.?z % 0) —
evaluation for suspected acute coronary instrumental variables models to evaluate (-2.30% to -0.95%)
syndrome (ACS), after acute myocardial the marginal effect of early NIT 54726 (54.0%) 2759 (53.8%) -1.32% 76
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infarction (AMI) has been excluded

The number needed to treat (NNT) was
calculated as the inverse of the absolute
composite risk reduction in death/AMI

= Our economic evaluation found use of NIT
to be cost-effective (<$6,000/QALY)

= However, even cost-effective interventions
face challenges in terms of adoption if the
upfront economic costs are high due to a

‘We used least absolute shrinkage and
selection operator (LASSO) techniques to
reduce the large number of baseline socio-

large target population demographic, cardiac and non-cardiac 9:‘52; g‘;;";") ﬁ;g ggz:f’;
. . e 270, -U70) x or N or T of D encounter
= If carly NIT is adopted as standard of care in conditions that could be features 147(0.1%) 85 (1.7%) . Fal pracios y NIT bascd <k ofhe ED

the 8 million annual suspected ACS cases in classifying death/MI risk (Table 1)

the US, direct medical expenditure could We then used k-fold Classification and Figure 1. CART Analysis based Decision Tree using subset of features selected by LASSO Regression

85035 (83.9%) 4126 (80.4%)

increase by nearly $35 billion annually Regression Tree Analysis (CART) to 16225 (16.0%) 986 (19.2%)
Objective identify the most important factors that 87(0.1%) 19 (0.4%)
* Hence, we explore if machine learning contribute to the risk of future MI/death
algorithms can be developed to identify 200GL7%  98U81%)
features that classify patients most likely at ~ Results ;(s)g; gg;,;“’; 3;5467 ((fé 72.,/"/';)
risk of deatAh or ?cute myogardial infarction . The cohort included 106,478 patients
(Mkl) especially in those with pre-test low- [mean age 53 (£15) years; female 58%)] 33986 (33.5%) 1093 (21.3%)
Tis| o o
= The unadjusted composite outcome of 62;;1 Eg.g%") 3‘5'; Eg?s'.%“)

death/non-fatal MI was 2.8% vs 1.1% in
the No-NIT and NIT arm respectively

CART analysis (Fig. 1) identified age

Methods
= We used a retrospective cohort study design

100260 (98.9%) 4986 (97.2%)

within the adult ED patient population in . 990 (1.0%) 127 (2.5%)
foll levated t o o
whom MI was ruled out, belonging to Kaiser above 65( ollowed by elevated troponin as Q) Bds
e the most important factors for future
Permanente Southern California integrated . .
healtheare deliv tem MI/death. Peripheral vascular disease and
caliheare delivery syste female sex were identified as important 5468 (5.4%) 283 (5.5%)
= We included ED patients with pre-test low- features ahead of CAD and CHF 2342 (2.3%) 56(1.1%)
risk based on HEART risk score and FOP) 5(0:1%)
followed them up to 1-year post ED 223 (0.2%) 16 (0.3%)
discharge
32712 (32.3%) 1881 (36.7%)
21413 (21.1%) 1058 (20.6%) Conclusion
2.8(249) 24(2.13) = We implemented machine learning techniques to further classify low-risk patients using smaller set of clinical

features & created a decision tree. Our findings may help improve economic and clinical efficiency of use of NIT



