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METHODS
• We utilized and combined data from the aforementioned sources to generate a 

thorough predictive model 

• Training and testing data were separated using a time-series split 

• Random forest regression was used to analyze how different factors impact the share 
of COVID-19 variants such as Alpha (B.1.1.7), Delta (B.1.617.2), Omicron subvariant 
BA.5, and Omicron subvariant XBB.1.5 across various U.S. regions (Figure 2) 

• The significance of various predictors was assessed by analyzing their feature 
importance

BACKGROUND
• The COVID-19 pandemic has prompted 

global health crises and significant 
disruptions. 1 A pivotal concern has 
been the evolution of COVID-19 
variants

• While machine learning has emerged as 
a powerful tool for predicting disease 
patterns and outcomes, there remains a 
notable gap in research specifically 
focused on the regional impacts of 
COVID-19 variants

CONCLUSIONS

• This research fills a crucial gap in understanding the 
regional dynamics of COVID-19 variant distribution

• By providing detailed insights into the geographical 
prevalence of specific variants, our study demonstrates 
the value of machine learning techniques for future 
targeted public health strategies and policies
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• The model showed high predictive accuracy, with R² values of 0.89 for Delta, 0.93 for 
BA.5, 0.94 for Alpha, and 0.92 for XBB.1.5, significantly surpassing the 0.72 R² value 
for a mixed-variant baseline (Table 1)

• Delta variant spread correlated strongly with ozone density, Alpha with temperature 
and air quality, XBB.1.5 with land area and income, and BA.5 with sun hours and UV 
index (Figure 3)

• These results suggest a complex interplay between environmental factors and variant 
spread. It appears that each variant has its favorable environment; for example, Delta 
may be more sensitive to ozone density but less sensitive to the temperature, and 
BA.5 may not be as sensitive to UV index as the other variants (Figure 4)

RESULTS

Variant Name Data 
Length MSE RMSE MAE R-Square

B.1.1.7 
(Alpha) 4398 0.006641 0.081491 0.033258 0.936054

В.1.617.2 
(Delta) 33357 0.021188 0.145561 0.031952 0.885554

BA.5
 (Omicron 
subvariant)

8032 0.010736 0.103613 0.025812 0.925882

XBB.1.5 
(Omicron 

subvariant)
210 0.006165 0.078517 0.040888 0.920208

DATASETS
• The National COVID Cohort 

Collaborative (N3C) database, which 
provides the share of variants weekly in 
each Health and Human Service (HHS) 
region, was utilized (Figure 1)

• Other public data sources used to 
identify important predictors of variants 
include: 

o US Department of Transportation - 
Bureau of Transportation Statistics

o World Weather Online  

o US Environmental Protection Agency

o US Census

Table 1. Accuracy Metrics of the HHS Region for 4 Variants

MAE, mean absolute error; MSE, mean squared error; RMSE, root mean squared error

Figure 2. Random Forest Regression Model 
Structure

Figure 4. The spearman correlation for the top 15 features that 
affects the share of BA.5

Figure 3. The relative importance for the top 15 features that 
affects the share of BA.5
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Figure 1. Regional Map of HHS 10 Regions2

OBJECTIVE

• Using machine learning techniques, 
specifically random forest regression, 
we evaluated the influence of various 
regional or temporal factors on the 
proportion of key COVID-19 variants 

• We aimed to identify predictors of 
variant prevalence and develop a data-
driven approach to pandemic 
management
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Note: Number of trips refers to the number of trips taken by residents, ozone (AQI) refers to the AQI at the ozone measuring site, and ozone (mean 
value) refers to ozone density. 
Abbreviations: AQI; air quality index, CO; carbon monoxide, NO2; nitrogen dioxide
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Note: Number of trips refers to the number of trips taken by residents, ozone (AQI) refers to the AQI at the ozone measuring site, and ozone (mean 
value) refers to ozone density. 
Abbreviations: AQI; air quality index, CO; carbon monoxide, NO2; nitrogen dioxide


