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Background Results Conclusions

e Causal inference from Real-World Data (RWD) is
growing in importance, driven by the need for
rapidly delivered and generalizable evidence to
inform regulatory, payer, and patient/provider
decision-making!?
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Relapsed and refractory multiple myeloma (RRMM) First-line treatment for metastatic colorectal cancer (mMCRC)
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Carelon Research received funding from Bristol-Myers Squibb for
research on which parts of this poster are based.

Challenge:

Variables that affect both exposure and Challenge:

outcome induce spurious correlation’ The pivotal KarMMA-1 trial (NCT03361748) used a single-arm design; due to the number of

products previously approved, the European Medicines Agency (EMA) recommended to
consider an ECA to demonstrate significant benefit.

Causal inference fromm RWD requires many assumptions, and transparency regarding these
assumptions is essential for reliable decision-making. This study created a DAG to elucidate
causal relationships and applied it to an integrated real-world data source.

MG, RD, SL are employees of Carelon Research (a wholly owned
subsidiary of Elevance Health), which conducts health outcomes
research with both internal and external funding, including a
variety of private and public entities. MG is a stockholder of
Elevance Health.
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* Measurement bias

Observed values deviate from underlying

8 °
true values Solution: Solution:
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* Selection bias
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A global, non-interventional, real-world study was set up to generate an ECA. Data from Two targeted literature searches identified 94 RCTs and 22 RWD studies, from which 28

EY and NH are employees and stockholders of Bristol-Myers Squibb.

Study sample selection is related to both
exposure and outcome; in other words, the
parameter of interest in the target
population differs from the parameter in
the available analytic sample?
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* Time-related bias
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Follow-up time and exposure status are
inadequately taken into account (e.g,,
immortal time bias'?)

Two case studies were chosen to illuminate the
trade-offs associated with using integrated RWD
for causal research.

clinical sites, reqistries, and research databases were aggregated into a single data model
and further analyzed. The EMA concluded that the efficacy results compared “favorably to
those in the matched RW historical cohort as well as those reported in the literature”.
Limitations of the ECA included a large proportion of missing data and overlap in
recruitment for the original study and the ECA at the same study centers.

For more information:

EPAR Assessment Report. EMEA/H/C/004662/0000. CHMP. EMA. 2021. Available at:
https:.//www.ema.europa.eu/en/documents/assessment-report/abecma-epar-public-
assessment-report_en.pdf [Accessed 29 Mar 2024]

variables were extracted. These potential confounders (e.g.,, tumor characteristics,
performance status, health care access) or colliders (e.g., data collection methods) relative
to the treatment-outcome relationship were built into the DAG. Using the Healthcare
Research Integrated Database (HIRD®), we identified measured and unmeasured
confounders and quantified the associations between each potential confounder, the
exposure (immuno-oncology therapy vs. chemotherapy), and the outcome (survival).

For more information:

Dixon R, Guzman M, Hopkins K, Lanes S, Grabner M, Hill NR, Dixon M. Treatment and
outcomes in metastatic colorectal cancer: A causal study design framework. Podium
presentation at the 2024 US ISPOR Annual Meeting; Wednesday May 8, 8:45-9:45AM,
session title: "Novel outcomes research data methods”

Poster presented at ISPOR 2024, May 5-8, Atlanta, GA, USA.

For additional insights on the use of integrated real-world data
for causal inference, please review the materials from our
workshop presented at the 2024 US ISPOR Annual Meeting,

Monday May 6, 5-6 PM. Session code 150.

An introductory step-by-step guide for causal inference using

observational data is available at

https://www.carelonresearch.com/perspectives/white-paper-

designing-rwe-studies-for-causal-inference
[Accessed 29 Mar 2024]
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