

Mesfin Genie¹, Shelby D. Reed^{1,2}, Juan Marcos Gonzalez Sepulveda^{1,2}, Semra Ozdemir^{1,2}

¹Department of Population Health Sciences, Duke University School of Medicine ²Duke Clinical Research Institute, Duke University School of Medicine

Background/Objective

- Context: Discrete choice experiments (DCEs) include tutorials and practice questions to familiarize respondents before the actual experiment (Janssen et al., 2018; Vass et al., 2020).
- **Objective**: To investigate the effect of providing feedback to respondents on a dominated-choice question on subsequent choice behavior.

Methods

- Assessed heart failure patients' preferences for medical devices using a DCE (n=626).
- Participants presented with a dominated-choice question Device A/B vs. "No Device" (Figure 1).
 - Device A/B: No benefits, associated risks.
 - "No Device": No risk or benefit.
- Participants making suboptimal choices [Device A/B; n=340] split into:
 - Feedback group (n = 170): Received feedback & option to revise choice.
 - Control group (n = 170): No feedback.
- Hypotheses:
 - Feedback increases choice consistency in subsequent questions.
 - Feedback creates unintended signaling towards the non-dominated (i.e., no device) option.
- Choice behavior analyzed via multinomial and heteroscedastic latent class logit models.

Figure 1. Dominated Choice Question

	Ability to Do Daily Activities	Additional risk of death in 30 days	Additional risk of complications leading to 2 extra days in the hospital	Remote Adjustment of Settings	Which would you choose?
No Device	Today 1 Year 2 Years 3 Years 4 Years 5 Years 6 Years 7 Years	None	None	None	
Device A	Device 1 Year 2 Years 3 Years 4 Years 5 Years 6 Years 7 Years	None	-100 -80 -60 -40 -20 5% (5 out of 100)	None	
Device B	Device 1 Year 2 Years 3 Years 4 Years 5 Years 6 Years 7 Years	-100 -80 -60 -40 -20 2% (2 out of 100)	None	None	

Results

- Post-feedback, 71% continued to choose suboptimal devices [Device A/B].
- Feedback → increased likelihood of choosing the "No Device" option in subsequent choice questions (p=0.002).
- Providing feedback decreased consistency by 31% (p<0.001).
- However, the effect of feedback on consistency varies across different respondent profiles (identified by 3 latent classes, Figure 2):
 - Class 1 (66%, pro-device) → no effect.
 - Class 2 (20%, pro-device, risk-focused) → consistency ↓.
 - Class 3 (14%, anti-device) → consistency 1.

Figure 2. Patients' preferences classified into latent classes – heteroskedastic latent class logit model (the effect of feedback on choice consistency)

	Class 1	Class 2	Class 3
Preference parameters	"Pro-Device"	"Pro-Device"	"Anti-Device"
Physical functioning			
1-year gain in NYHA class II	1.199 (0.496) ***	-0.289 (0.312)	0.903 (0.253) ***
1-year gain in NYHA class III	0.967 (0.117) ***	-0.369 (0.306)	0.569 (0.216) ***
30-day mortality risk (vs 0%)			
2%	-0.188 (0.106) *	-0.309 (0.279)	-0.692 (0.244) ***
5%	-0.603 (0.119) ***	-0.676 (0.319) **	-0.973 (0.283) ***
10%	-1.608 (0.187) ***	-0.222 (0.360)	-1.762 (0.512) ***
15%	-1.327 (0.185) ***	-2.110 (0.669) ***	-1.443 (0.431) ***
In-hospital complication risk (vs 0%)			
5%	-0.100 (0.108)	-0.219 (0.268)	-0.957 (0.252) ***
15%	-0.626 (0.119) ***	-0.519 (0.306) *	-1.819 (0.434) ***
40%	-1.148 (0.141) ***	-1.287 (0.387) ***	-1.144 (0.291) ***
Remote device adjustment (vs no)	0.405 (0.077) ***	-0.529 (0.261) **	0.066 (0.172)
Optout – No Device	-3.554 (0.496) ***	-2.673 (0.571) ***	0.660 (0.318) **
Membership parameters			
CONSTANT	1.519 (0.191) ***	0.316 (0.294)	0.000 (fixed)
Explanatory variables of scale			
Feedback (vs no)	-0.132 (0.105)	-0.700 (0.305) **	0.519 (0.214) **
CLASS SHARE (%)	65.811	19.771	14.415
Model diagnostics			
LL at convergence	-1985.031		
McFadden's pseudo-R2	0.241		
Number of observations	2632		
Number of respondents	329		

Conclusions

- Feedback can influence choice behavior in DCEs.
- Despite feedback, most respondents maintained their initial choice post-feedback.
 - **Possible reasons:** misunderstanding of the options presented, or beliefs/hope about benefits not represented in the choice question.
- Study highlights potential unintended consequences of feedback in DCEs.
 - Suggests feedback alone may not adequately "train" survey participants.

Acknowledgments

The authors gratefully acknowledge the contributions from the patient advisors: Laura Huber, Kristi Mardis, Tracey Young, members of the Stated Preference Initiative Heart Failure Working Group, and survey respondents from the Duke University Health System and Kantar-Lightspeed.

References

- 1. Janssen, E. M., Hauber, A. B., & Bridges, J. F. P. (2018). Conducting a Discrete-Choice Experiment Study Following Recommendations for Good Research Practices: An Application for Eliciting Patient Preferences for Diabetes Treatments. Value in Health, 21(1). https://doi.org/10.1016/j.jval.2017.07.001
- 2. Vass, C. M., Davison, N. J., Vander Stichele, G., & Payne, K. (2020). A Picture is Worth a Thousand Words: The Role of Survey Training Materials in Stated-Preference Studies. Patient, 13(2). https://doi.org/10.1007/s40271-019-00391-w

