Effectiveness and coverage of COVID-19 vaccination among the infection-naive population: a community-based retrospective cohort study in China

Yaqun Fu¹, Jiawei Zhang¹, Quan Wang¹, Zhihu Xu¹, Peien Han¹, Zhijie Nie¹, Jingyu Zhao¹, Qingbo Wang¹, Qing Liu², Xia Wei³, Zhiyuan Hou^{4*}, Jing Guo^{1*}, Li Yang^{1*} ¹School of Public Health, Peking University, Beijing 100191, China; ²General Practice Department, Second Outpatient Section, Peking University Third Hospital, Beijing 100096, China; ³London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT; ⁴ School of Public Health, Fudan University, Shanghai, 200030, China *Corresponding Author: lyang@bjmu.edu.cn (Li Yang)

Introduction

- China eased its zero-COVID policy in November 2022 and then pandemic outbreak has imposed a substantial burden.
- This study aims to analyze real-world vaccination effectiveness and waning effects among community-based COVID-19 infection-naive individuals and among different sub-groups.

Methods

- An online questionnaire survey was conducted in Beijing, from January 13th to February 9th, 2023 and a total of 45,344 eligible respondents were included in the analysis.
- Vaccination and infection status among different groups classified by age (under 18, 18-59, and over 60) and health conditions (having underlying disease, allergy, cancer, immune deficiency or organ transplant) were analyzed.
- Propensity score matching and ordered logistic regression were used to examine the effectiveness of different COVID-19 vaccine types (inactivated, adenovirus, subunit protein, and mRNA vaccine), vaccination strategies (non-vaccination, primacy vaccination, homogenous booster, and heterogenous booster) and the waning effects.

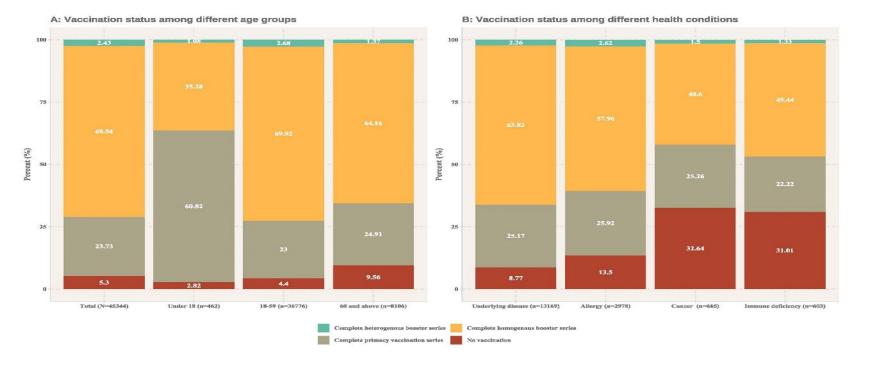
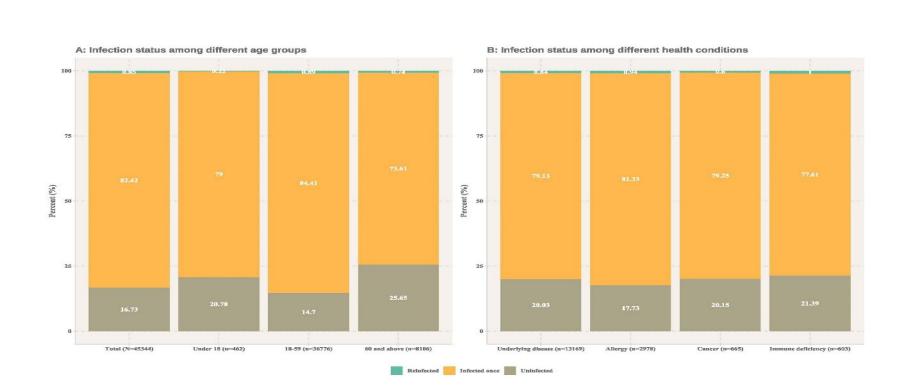
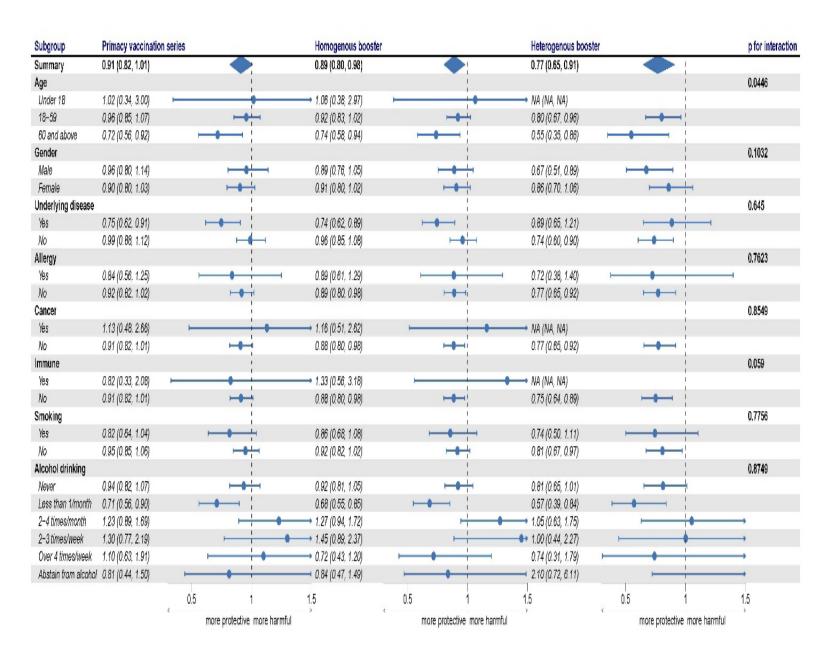




Figure 1 Vaccination status among different groups

Figure 3 The effects of different vaccination strategies classified by subgroup

Figure 2 Infectious status among different groups

Funding: This study was supported by National Natural Science Foundation of Beijing Municipality, and Capital Health Research and Development of Special Fund.

- vaccination coverage. (Figure 2)
- identified. (Table 1)
- injection. (Table 2)

Table 2 The effects of waning among three vaccination strategy groups

Severity Waning effects (ref= within 3-6 months 6-12 months >12 months

Note: confounding factors are controlled in Model 1-3, and propensity score matching was not performed in regression ^a Model 1 is the primacy vaccination series group, due to missing value, 8823 out of 10759 observers are included in analysis; ^b Model 2 is the homogenous vaccination group, due to missing value, 25968 out of 31079 observers are included in analysis; ^c Model 3 is the heterogenous vaccination group, due to missing value, 821 out of 1102 observers are included in analysis

* p<0.05, ** p<0.01

scheduled within 12 months.

The infection rate was 82.42% among sampled population. (Figure 1)

The vaccination rate was 94.70%, with 23.73% of them completed primacy vaccination series, 68.54% completed homogenous booster vaccination and 2.43% completed heterogenous booster vaccination; however, the high-risk population had a lowe

Real-world vaccine effectiveness (VE) of homogenous and heterogenous booste vaccination against infection were 11% and 23%, and the elderly benefited the most Adolescents had a lower booster vaccination coverage and no significant VE was

Waning effects were identified in the booster vaccination group after 12 months o

	Model 1 ^a	Model 2 ^b	Model 3 ^c
Y	OR (95% CI)	OR (95% CI)	OR (95% CI)
	n=8,823	n=25,968	n=821
in 3-month)			
	0.97 (0.82, 1.16)	1.10 (0.99, 1.21)	0.70 (0.30, 1.66)
	1.04 (0.89, 1.22)	1.00 (0.92, 1.09)	0.91 (0.46,1.77)
	0.96 (0.82, 1.11)	1.09* (1.00, 1.17)	0.57 (0.30, 1.10)

Conclusion

Low vaccination coverage among high-risk and vulnerable may lead to a huge disease and societal burden, thus improving vaccine coverage of these groups should be prioritized. In addition, due to waning immunity, regular booster vaccination should be

Results

Poster Code: EPH143 Abstract ID: 135226

Table 1 The effects of different vaccination strategies in avoiding

severity of COVID-19 infection

Variables	Severity ^a	
• al lavits	OR (95% CI)	
Vaccination (ref=non-vaccination)		
Primacy vaccination series	0.91 (0.82, 1.01)	
Homogenous booster	0.89* (0.81,0.98)	
Heterogenous booster	0.77** (0.65,0.91)	
Marriage status	1.03 (0.98,1.08)	
Occupation	$0.99^{**}(0.98, 1.00)$	
Age	1.00 (0.99,1.01)	
Gender (ref=male)	1.08** (1.02, 1.15)	
Medication	1.09** (1.07,1.10)	
Educational level	1.05** (1.04,1.07)	
Medical insurance type (ref=OOP)		
Employee	1.07 (0.95, 1.19)	
Resident	1.11 (0.99,1.25)	
Socialized	1.03 (0.89, 1.20)	
Other	1.07 (0.87,1.31)	
Smoking (ref=no)	1.44** (1.34, 1.54)	
Drinking frequency (ref=never)		
Less than 1/month	1.09** (1.03,) 1.16	
2-4/month	1.15** (1.06,1.25)	
2-3/week	1.10 (0.97,)1.24	
4/week and above	1.16* (1.02, 1.31)	
Abstain from alcohol	0.92 (0.81, 1.05)	
BMI (ref=Normal)	0.92(0.01, 1.05)	
Malnutrition	1.17** (1.04, 1.32)	
Obesity	1.03 (0.98, 1.07)	
•	1.03 (0.98,1.07)	
Nutrition (meals per day, ref=3 meals)		
0-1	0.82 (0.63, 1.08)	
2	1.00 (0.94,1.05)	
>3	1.21* (1.02, 1.44)	
Exercise per day (ref=never)		
<0.5 h	0.91** (0.86, 0.96)	
0.5-1 h	0.78** (0.73, 0.83)	
1-2 h	0.71** (0.65,) 0.78	
>2 h	$0.65^{**}(0.57, 0.74)$	
Sleep quality (ref=normal)		
Very bad	1.37** (1.23, 1.52)	
Bad	1.35** (1.26, 1.45)	
Good	0.92 ** (0.87, 0.97)	
Very good	0.79** (0.71, 0.88)	
Number of symptoms after infection	1.29** (1.28, 1.29)	
Underlying disease	1.12** (1.06, 1.19)	
Allergy	1.22** (1.12, 1.33)	
Cancer	1.13 (0.94, 1.36)	
Immune deficiency	1.03 (0.84,1.26)	

Note: ^a Propensity score matching was performed in regression

Employee: basic medical insurance for urban employees; OOP: out-of-pocket payment; Resident: basic medical insurance for urban and rural residents; Socialized: socialized medicine insurance * p<0.05, ** p<0.01