

Effectiveness of Pharmacist-Led Interventions on Medication Use and Health Outcomes in Alzheimer's

Disease or Other Dementias: A Systematic Review Oluchukwu M. Ezeala, BPharm¹; Jingjing Qian, PhD¹

¹Department of Health Outcomes Research and Policy, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA Email: ome0004@auburn.edu **HSD120**

Objective

To assess the effects of pharmacist interventions on medication use and health outcomes in older adults with Alzheimer's disease or other dementias using published literature.

Methods

- Embase, PubMed, PsycInfo, CINAHL and ClinicalTrials.gov were systematically searched from inception to April 16, 2023, for articles published in English.
- Search terms used: "dementia," "amentia,"
 "Alzheimer's Disease," "Alzheimer's," "pharmacist,"
 and "pharmacists."
- Full-text articles that investigated the impact of pharmacist-led interventions on medication use and health outcomes in older patients with dementia or Alzheimer's disease were included in the final review.
- The National Institutes of Health Quality
 Assessment Tool was used to rate the quality of the
 included studies based on their study design.

Figure 1: Flow chart showing the review process.

Table 1: Characteristics of the Included Studies

from RCT,

Before-after

Nanaumi 2015,

Netherlands	fair		APID sub-scores.
Gustafsson 2017,	RCT,	30 and 180 days	Risk of drug-related hospital readmissions.
Sweden	good		
Gustafsson 2018,		30 and 180 days	Number of PIMs, incidence of all-cause ED visits, and time
Sweden	from RCT,		to institutionalization.
	good		
Siölander 2019	Secondary analysis of data	30 and 180 days	Number of drug-related readmissions and cost

Sjölander 2019,	Secondary analysis of data	30 and 180 days	Number of drug-related readmissions and cost.
Sweden	from RCT,		
	good		
Pfister 2017,	Secondary analysis of data	180 days	Type and frequency of DRPs.

	TAII		
Poisson 2019,	RCT,	6 and 12 months	QoL in AD; frequency of use of ED, hospitalization, and
USA	good		ambulance services by PWDs; caregiver depression score,
			caregiver burden score and self-efficacy.

	from RCT, good		cognitive impairment, CNS-active drugs, total number of medications, number of prescriptions and ACB.
Sakakibara 2015.	Controlled intervention.	3 and 6 months	QoL, ADL, and change in number of prescription drugs.

anambara 2010,			QUE, MDE, and onling of minimor of procomption arago.
apan	poor		
/lori 2021,	Controlled intervention,	NR	Final dose of rivastigmine received during hospitalization,
apan	poor		and
			Dose of rivastigmine brought-in drug

able 2020, ustralia	Controlled intervention, fair		Time to hospital or ED readmission, medication DAAs utilized by patients after discharge and GP HMR requests/completion
atanabe 2012,	Controlled intervention, fair	1 year	Understanding of AD and donepezil by patients and

caregivers; MPR

Number of DRPs identified and resolved by the pharmacist

Adherence to donepezil and caregivers' understanding of

donepezil and dementia treatment.

by prescribers and ACB.

ilchesky 2018, anada	Before-after, fair	4 months	Number of regular medications used and medication appropriateness.
beddini 2022, anada	Before-after, fair	3, 6 or 12 months	ADL, medication deprescription, adverse effects.
alli 2021, ırkey	Before-after, good	4 months	Adherence to dementia treatment and dementia knowledge.
nild 2012, <	Before-after, poor	NR	Reduction of dose or withdrawal of antipsychotic drugs.

jestad 2019, orway	Before-after, fair	NR	ACB
	Before-after, poor	1 month	BEHAVE-AD, drug-related side effects

Forgerini 2022, Brazil	Before-after, fair	6 months	Resolution of DRPs and control of physical and biochemical indicators.
Maidment 2018, UK	Before-after, poor	6 months	NPI-NH, medication reviews recommendations, and implementation.
Coli 2022, USA	Before-after, good	NR	Frequency and prevalence of PIMs, acceptance rate of pharmacists' recommendations

Swain 2012
USA

Before-after,
poor

NR

Number and type of therapeutic suggestions provided by the pharmacist and patient satisfaction.

Mori 2022,
Japan

Retrospective cohort study, NR

Japan

Proportion of sleep medications-BZDs, n-BZDs, n-GADs-used during hospitalization and discharge.

Pharmacists' interventions

- Medication reviews
- Medication reconciliations
- Counseling/education for patients and caregivers, patient monitoring
- Anticholinergic burden evaluation
- Development of new medication plans
- Referrals and recommendations to other healthcare providers.

Key findings

- Evidence shows that the interventions were effective in reducing potentially inappropriate medications, improving the appropriateness of anticholinergic and psychotropic medications, and reducing drug-related problems.
- Effects of pharmacists' interventions on improving adherence to treatment, patients' quality of life, medication persistence rate, and reducing emergency department visits were inconsistent.
- More than 50% of the pharmacists' recommendations were successfully implemented.

Limitations

Only full-text articles published in English and indexed in five databases plus one register were assessed. Only 7 out of 25 reports were rated with "good" quality.

<u>Conclusion</u>

Future studies should aim to develop more robust interventions that can address the inconsistencies in the effectiveness of pharmacist-led interventions.

<u>Acknowledgement</u>

We thank Adelia Grabowsky for her assistance in literature search.

ACB- anticholinergic cognitive burden, QoL- quality of life, APID- appropriate drug use in dementia, PIMs-potentially inappropriate medications, ED- emergency department, DRPs- drug-related problems, AD-Alzheimer's disease, PWD- persons with dementia, CNS- central nervous system, ADL- activities of daily living, DAAs- dose administration aids, GP- general practitioner, HMR- home medicines review, MPR- medication persistence rate, BEHAVE-AD- behavioral pathology in Alzheimer's disease, NIP-NH- neuropsychiatric inventory- nursing home version, BZDs-benzodiazepines, n-BZDs- non-benzodiazepines, n-GADs- non gamma-aminobutyric acid receptors agonist drugs.