Predicting Optimal Treatment Regimen To Improve Outcomes Of Patients With CLL/SLL Using Random Survival Forest

Drew Butkowski¹, Zhanglin Cui², Manoj Khanal², Ilya Lipkovich², Zbigniew Kadziola², Douglas Faries², Casey Choong², Yongmei Chen², Naleen Raj Bhandari², Lisa M Hess²

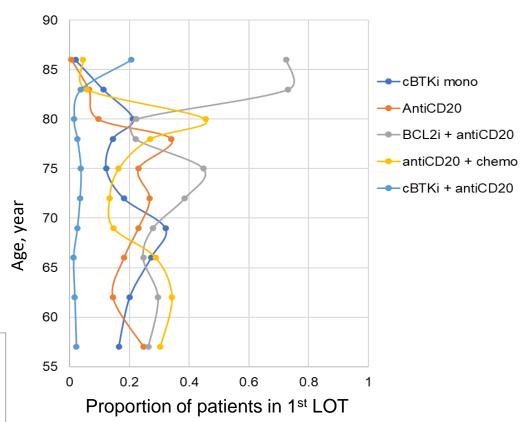
¹Florida International University, North Miami, FL 33181, USA

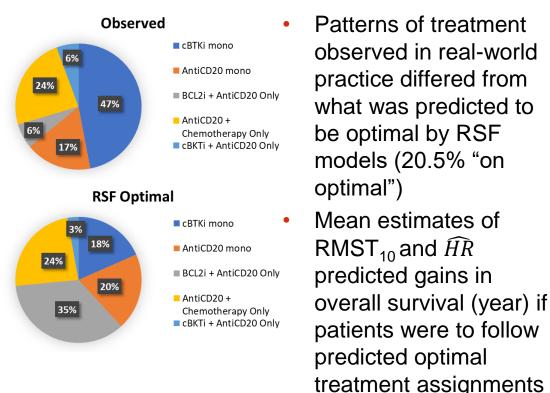
Background

- Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are similar, slowgrowing types of blood cancers that affect the lymphocytes
- Average 5 and 10-year survival rates after initial CLL diagnosis are estimated as 88% and 78%, respectively (SEER, 2023)
- Patient care has evolved with the introduction of targeted therapies such as covalent Bruton tyrosine kinase inhibitor (cBTKi), B-cell lymphoma-2 inhibitor (BCL2i), etc.
- Individualized treatment regimens aim to address the question of identifying the most suitable treatment option for a given patient. However, optimal treatment have not been comprehensively studied in this disease setting
- **Objectives**: To predict optimal treatment regimen classes in first and second lines of therapy (LOT) that maximizes overall survival (OS) in patients with CLL or SLL by using random survival forest (RSF) for clinical decision-making.

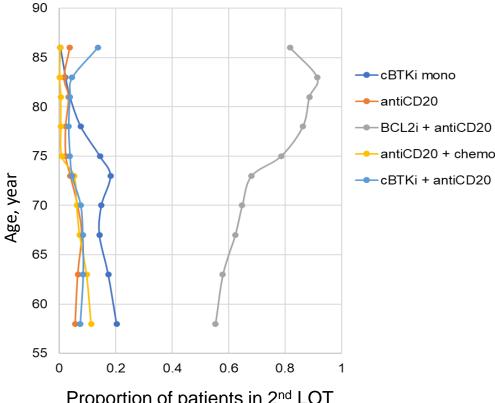
Study Design/Methods

- The study used the nationwide, longitudinal Flatiron Health electronic health record-derived, deidentified database, comprising patient-level data originated from ~280 cancer clinics (~800 sites; primarily community oncology settings) and curated via technology-enabled abstraction.
- Eligible patients were adults diagnosed with CLL/SLL who received ≥1 LOT between January 1, 2016 and August 31, 2023.
- Individualized regimens were grouped into hierarchy regimen classes; the five most common were included in this analysis.
- Study cohorts were randomly partitioned 1000 times into 80% training and 20% testing subsets.
- RSF models were used to predict optimal regimen classes in first and second LOT based on baseline demographics and clinical characteristics.
- The OS expected under the predicted optimal treatment regimen was compared to that under the current prescribing practice by using Cox proportional hazards regression, adjusted for baseline characteristics imbalance by inverse probability weighting.
- § Detailed patient and clinical characteristics are available upon request.
- * 95% prediction intervals (PI) based on 1000 random split replications.
- # Larger importance scores indicated greater relative importance of a variable among all other variables in the RSF model. Abbreviations: ECOG = Eastern Cooperative Oncology Group; $HR = hazard ratio; RMST_{10} =$
- restricted mean survival time at 10 years; SES = socioeconomic status


 The study cohort included 7,219 and 2,252 patients with first and second LOTs, respectively.


Table 1. Differences in baseline characteristics among top 5 regimen classes

	P-value P-value	
	comparing	comparing
	regimen	regimen
	classes at 1st	classes at 2nd
Baseline Variable §	line start	line start
Age, year	<.0001	0.0001
Sex (female, male, unknown)	<.0001	0.0009
Race (White, Black/African American, other, unknown)	<.0001	0.1794
Ethnicity (Hispanic/Latino, Not Hispanic/Latino, unknown)	0.0000	0.4608
Practice Region (Northeast, Midwest, South, West)	<.0001	0.0003
SES Index 2015-2019 (1, 2, 3, 4, 5, unknown)	0.0028	0.1037
ECOG performance status (0-1, 2+, unknown)	<.0001	<.0001
Rai Stage (0, I, II, III, IV, not documented)	<.0001	0.0278
Time from Diagnosis to 1 st /2 nd Line Start, respectively	<.0001	<.0001
Deletion11q (mutated, unmutated, unknown)	<.0001	<.0001
Deletion13q (mutated, unmutated, unknown)	<.0001	<.0001
Deletion17p (mutated, unmutated, unknown)	<.0001	<.0001
Trisomy12 (mutated, unmutated, unknown)	<.0001	<.0001
Disease Subtype (CLL, SLL, CLL/SLL)	<.0001	0.1731
Hepatosplenomegaly (true, false)	<.0001	0.1410
Lymphadenopathy (true, false)	<.0001	0.0038
Practice Type (academic, community)	<.0001	0.0011
AntiCD20 in 1st LOT (yes, no)	N/A	<.0001
BCL2i in 1st LOT (yes, no)	N/A	0.0251
cBTKi in 1st LOT (yes, no)	N/A	<.0001
PI3Ki in 1st LOT (yes, no)	<u>N/A</u>	<u>0.7728</u>
Payer Category	<.0001	0.0036

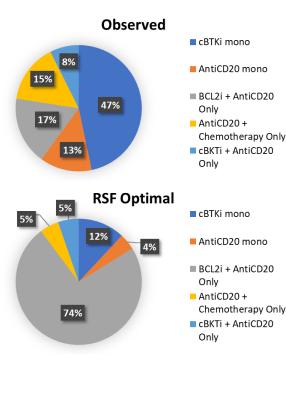

Figure 3. Variable importance in 1st LOT

Age at Line 1 start0.44 (0.32, 0.54)Age at LTime from diagnosis to Line 1 start0.25 (0.20, 0.31)Time from startRai stage0.25 (0.20, 0.31)SES IndexPayer category0.24 (0.19, 0.28)Rai stagePractice region0.23 (0.18, 0.28)ECOG performance statusCOG performance status0.22 (0.17, 0.28)Payer category	i		U
Time from diagnosis to Line 1 Time from diagnosis to Line 1 start 0.25 (0.20, 0.31) Rai stage 0.25 (0.20, 0.31) Payer category 0.24 (0.19, 0.28) Practice region 0.23 (0.18, 0.28) SES Index 0.23 (0.17, 0.28) ECOG performance status 0.22 (0.17, 0.28) Sex 0.17 (0.12, 0.22) Lymphadenopathy 0.15 (0.11, 0.20)	Variable	Importance score (95% PI) #	Variable
start 0.25 (0.20, 0.31) start Rai stage 0.25 (0.20, 0.31) SES Ind Payer category 0.24 (0.19, 0.28) Rai stage Practice region 0.23 (0.18, 0.28) ECOG performance status SES Index 0.23 (0.17, 0.28) Practice ECOG performance status 0.22 (0.17, 0.28) Payer category Sex 0.17 (0.12, 0.22) Line 1 c Lymphadenopathy 0.15 (0.11, 0.20) Sex	Age at Line 1 start	0.44 (0.32, 0.54)	Age at L
Payer category 0.24 (0.19, 0.28) Rai stag Practice region 0.23 (0.18, 0.28) ECOG p SES Index 0.23 (0.17, 0.28) Practice ECOG performance status 0.22 (0.17, 0.28) Payer category Sex 0.17 (0.12, 0.22) Line 1 c Lymphadenopathy 0.15 (0.11, 0.20) Sex	0	0.25 (0.20, 0.31)	Time fro start
Practice region 0.23 (0.18, 0.28) ECOG p SES Index 0.23 (0.17, 0.28) Practice ECOG performance status 0.22 (0.17, 0.28) Payer c Sex 0.17 (0.12, 0.22) Line 1 c Lymphadenopathy 0.15 (0.11, 0.20) Sex	Rai stage	0.25 (0.20, 0.31)	SES Ind
SES Index 0.23 (0.17, 0.28) Practice ECOG performance status 0.22 (0.17, 0.28) Payer can be available Sex 0.17 (0.12, 0.22) Line 1 can be available Lymphadenopathy 0.15 (0.11, 0.20) Sex	Payer category	0.24 (0.19, 0.28)	Rai stag
ECOG performance status 0.22 (0.17, 0.28) Payer can be available Sex 0.17 (0.12, 0.22) Line 1 c Lymphadenopathy 0.15 (0.11, 0.20) Sex	Practice region	0.23 (0.18, 0.28)	ECOG p
Sex 0.17 (0.12, 0.22) Line 1 c Lymphadenopathy 0.15 (0.11, 0.20) Sex	SES Index	0.23 (0.17, 0.28)	Practice
Lymphadenopathy 0.15 (0.11, 0.20) Sex	ECOG performance status	0.22 (0.17, 0.28)	Payer ca
	Sex	0.17 (0.12, 0.22)	Line 1 co
Race 0.15 (0.11, 0.19) Race	Lymphadenopathy	0.15 (0.11, 0.20)	Sex
	Race	0.15 (0.11, 0.19)	Race

Event OS

²Eli Lilly and Company, Indianapolis, IN 46285, USA

Results


Figure 1. Observed vs RSF optimal treatments in 1st LOT

		Observed RMST ₁₀ *	RSF Opt. RMST ₁₀ *	\widehat{HR}^*
1442	20.5	6.7 (6.6, 6.9)	6.9 (6.2 <i>,</i> 7.6)	0.86 (0.67, 1.1)

Figure 4. Variable importance in 2nd LOT

e	Importance score (95% PI) #
Line 2 start	0.23 (0.09, 0.40)
om diagnosis to Line 2	
	0.16 (0.06, 0.27)
dex	0.15 (0.05, 0.26)
ge	0.13 (0.05, 0.23)
performance status	0.12 (0.04, 0.22)
e region	0.11 (0.03, 0.21)
category	0.10 (0.03, 0.21)
contains cBTKi	0.10 (0.03, 0.21)
	0.10 (0.03, 0.21)
	0.09 (0.02, 0.19)

Figure 2. Observed vs RSF optimal treatments in 2nd LOT

- Patterns of treatment observed in real-world practice differed from what was predicted to be optimal by RSF models (20.5% "on optimal")
- Mean estimates of RMST₁₀ and \widehat{HR} predicted gains in overall survival (year) if patients were to follow predicted optimal treatment assignments

Event			Observed RMST ₁₀ *		\widehat{HR}^*
OS	449	20.5	6.1 (5.8, 6.5)	6.7 (4.6, 8.3)	0.76 (0.4, 1.2)

Conclusions

- RSF was feasible using oncology EHR data, building the evidence to inform how machine learning may provide recommendations for oncologists in choosing individualized treatments that may be associated with improved outcomes for patients with CLL/SLL.
- In L1 and L2 settings, RSF models predict a different pattern of treatment than currently observed in real-world practice. Future work should focus on evaluating optimal treatment sequencing strategy.
 - In part due to increasingly recommending BCL2i + antiCD20.
 - Limitations: Restricted to treatments observed in real world practice; Only top 5 treatment regimens were considered; Sample size was limited for later lines of therapy; Survival analyses sensitive to censoring rate. The RSF models do not take into account what is known from RCTs and may misinterpret data based on limited variables.

REFERENCES

1. SEER Cancer Stat Facts: Chronic Lymphocytic Leukemia (August 1, 2023). National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/statfacts/html/clyl.html 2. Cui ZL, Kadziola Z, Lipkovich I, Faries DE, She eld KM, Carter GC. Predicting optimal treatment regimens for patients with HR+/HER2- breast cancer using machine learning based on electronic health records. Journal of Comparative Effectiveness Research 2021;10(9):777-795. 3. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. The annals of applied statistics 2(3), 841-860 (2008).

Scan or click the QR code or use this URL (https://lillyscience.lilly.com/congress/ispor2024) for a list of all Lilly content presented at the congress.

Other company and product names are trademarks of their respective owners.

Proportion of patients in 2nd LOT