
References:

[1] Bushby, K., Finkel, R., Birnkrant, D.J., et al. (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: 
diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 9, 77–93 (2010).
[2] Broomfield, J., Hill, M., Crowther, M.J., et al. (Presented virtually 14-15 May 2020) Project HERCULES: the challenges of 
estimating multi-state model transitions in rare diseases: creating a natural history model for Duchenne muscular dystrophy 
(DMD). Poster Number 173.  European Conference on Rare Diseases (ECRD).
[3] Broomfield, J., Hill, M., Chandler, F., et al. (2024) Developing a Natural History Model for Duchenne Muscular Dystrophy. 
PharmacoEconomics Open 8, 79–89.
[4] Casella, G., & Berger, R. L. (2001). Statistical Inference (2nd ed.). Duxbury Press.
[5] Anderson, T. W. (1962). On the distribution of the two-sample Cramer-von Mises criterion. The Annals of Mathematical 
Statistics, 1148-1159.
[6] Muntoni F., Goemans N., Posner, N., et al. (2023) PCR28 Characterization of Patients with Duchenne Muscular Dystrophy 
across Previously Developed Health States. Value in Health, 26(6), S316-S317.
[7] McDonald, C. M., Henricson, E. K., Abresch, R. T., et al. (2018) Long-term effects of glucocorticoids on function, quality of life, 
and survival in patients with Duchenne muscular dystrophy: a prospective cohort study. The Lancet, 391(10119), 451-461.
[8] Bello, L., Morgenroth, L. P., Gordish-Dressman, H., et al. (2016) DMD genotypes and loss of ambulation in the CINRG 
Duchenne Natural History Study. Neurology, 87(4), 401-409.
[9] Broomfield, J., Hill, M., Guglieri, M., et al. (2021) Life expectancy in Duchenne muscular dystrophy: reproduced individual 
patient data meta-analysis. Neurology, 97(23), e2304-e2314.
[10] Rall, S., & Grimm, T. (2012) Survival in Duchenne muscular dystrophy. Acta Myologica, 31(2), 117.
[11] Ryder, S., Leadley, R. M., Armstrong, N., et al. (2017) The burden, epidemiology, costs and treatment for Duchenne muscular 
dystrophy: an evidence review. Orphanet journal of rare diseases, 12, 1-21.

Objective
To estimate the distribution of time spent in each 
health state before progressing to the next for a 
condensed version of HERCULES Natural History 
Model (NHM) in DMD
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Model selected
• For each fitted model, the age distribution of each health state transition was simulated to 

predict survival curves for each key DMD milestone event. The predicted curves were 
compared to published Kaplan-Meier (KM) using the Cramer von-Mises (CvM) distance.[5]

Conclusions
Drawing on heterogeneous sources of published 
data and using the cumulant method to bridge the 
data gaps, we obtained new estimates of health 
state transition probabilities for the HERCULES NHM 
of DMD. These new estimates were consistent with 
multiple published sources and represent 
improvements to the previous estimates.

The congruence between our estimates and 
multiple published sources support the use 
estimates from this health state model as a basis for 
cost-effectiveness analysis and health technology 
appraisals in DMD. 

Methods

Data sources (Table 1)
• Published aggregate data for the distribution of ages represented in each health 

state.
• Published time-to-event curves for specific health state transitions, identified via 

targeted literature review.
NHM
• A condensed 5-state version of the HERCULES NHM was used in the present study 

(Figure 1), in which the levels of ventilation support were used to define states 3-5. 
• The model assumes sequential progression through health states, with no backwards 

transitions between states (Figure 2).
Estimation of transition probabilities
• Four candidate distributions were evaluated: exponential, gamma, lognormal and 

Weibull.
• Parameter estimation was based on a method of moments approach, exploiting a 

statistical property of Markov models: the additivity of cumulants.[4] 

• Empirical moments, e.g., mean and variance, for the distribution of times between 
each health state transition were calculated from aggregate data on the distribution 
of ages in each health state (see Box 1).

• Variance-covariance matrices were estimated by applying a bootstrap re-sampling 
procedure.

Introduction

• Duchenne Muscular Dystrophy (DMD) is a rare, progressive genetic disorder that 
causes muscle degeneration and weakness, starting in early childhood and leading 
to a deterioration of mobility, independence, and ultimately, early mortality.[1]

• To inform health economic decision-making, a NHM of DMD disease progression 
across eight health states has been developed based on input from clinicians, 
patients, and caregivers by Project HERCULES.[2]

• The HERCULES model estimates the lifetime DMD disease trajectory through 
ambulatory and non-ambulatory health states; results from the model are, in part, 
a basis for health economic models that assess the lifetime costs and benefits of 
DMD treatment.[3]

• Estimation of transition probabilities for the HERCULES model, i.e., the rates at 
which DMD patients progress through the different health states, is critical for 
appropriate use in decision making. Inaccurate transition probabilities can lead to 
inaccurate technology appraisals. 

• Previous estimates using traditional methods do not align with published literature 
on key milestones in NH.[3]

• Traditional approaches to estimating transitional probabilities have been limited by 
the sparseness of longitudinal data representing health state transitions, which is a 
common challenge, especially in rare disease.
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Figure 2: Times and ages associated with the transitions between 
states

Note: Tk denote “entry times” which are the ages at which patients enter a health state. Dk  
(𝐷𝐷𝑘𝑘 = 𝑇𝑇𝑘𝑘+1 − 𝑇𝑇𝑘𝑘) denote “length of stay”, “interarrival durations”, or “sojourn times”, which 
are the times spent within each state, and are mutually independent. The current study 
assumed patients enter the model through State 1 (Early Ambulatory) at birth, i.e., 
𝑇𝑇1 = 𝐷𝐷0 = 0.

Figure 1: Health states and disease model used in the present study

Abbreviations: FVC%p; Forced vital capacity percent predicted.

Table 1: Data sources for summary age statistics and age-at-event curves for health 
states and DMD milestones

Table 2: Statistical moments characterizing time spent within health states

Table 3: Estimated parameters (alpha and beta) and standard 
errors (SE) for Weibull distribution characterizing the duration 
times (in years) spent within health states

Note: Standard errors were computed from the diagonal elements of the variance-
covariance matrix estimated through bootstrap resampling method.

Figure 4. Survival curves of transition ages per health 
state resulting from assuming different probability distributions 
for time between transitions

Figure 3. Juxtapositions of the fitted model assuming different distributions against 
benchmark KM curves from the published literature

Results
• The estimated mean (standard deviation [SD]) duration times (in years) that patients 

spend within health states are 10.27 (2.42), 2.25 (2.02), 2.00 (2.23), 6.77 (5.46) and 
8.23 (8.74) for states 1-5, respectively (Table 2).

• The best overall fit to the data was provided by the Weibull-based model, as 
quantified by the CvM distance between simulated age-at-event curves and published 
KM curves for equivalent DMD milestones (Figure 3). The estimated 
Weibull parameters are shown in Table 3.

• Simulated median transition ages in the Weibull-based model for key DMD milestones 
were 12.4 years (95% CI: 6.6, 19.0) for loss of ambulation, 20.4 years (95% CI: 11.1, 
37.4) for start of full-time ventilation, and 27.6 years (95% CI: 14.1, 57.6) for death. 
These results are consistent with recent published literature.[7-11]

Limitations
• This study relied on published aggregated data and a Markov model framework. 

Thus, the methods rely on several assumptions, including transition times 
between states are independent, health states are visited sequentially, no 
backward transitions are allowed, and the distribution of ages within each 
health state in the source data is representative and unbiased. 
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Box 1. Calculations

• The nth order cumulant of times spent within states, 𝑐𝑐𝑛𝑛 𝐷𝐷𝑘𝑘 , can be deduced from the 
cumulants of ages of entry, since 𝑇𝑇𝑘𝑘+1 = 𝑇𝑇𝑘𝑘 + 𝐷𝐷𝑘𝑘  for any health state 𝑘𝑘 (see Figure 2),

• and 𝑇𝑇𝑘𝑘  is independent of 𝐷𝐷𝑘𝑘 (Markov property), using the additivity of cumulants:

 𝑐𝑐𝑛𝑛 𝐷𝐷𝑘𝑘 = 𝑐𝑐𝑛𝑛 𝑇𝑇𝑘𝑘+1 − 𝑐𝑐𝑛𝑛 𝑇𝑇𝑘𝑘  Equation (2)
  
• After computing the cumulants of the times between state transitions, 𝑐𝑐𝑛𝑛 𝐷𝐷𝑘𝑘 , estimation 

of their statistical moments were computed using the same relations between cumulants 
and moments in Equations (1a)-(1d).

• With the estimated moments of times between state transitions, their associated 
probability distributions were estimated for each health state using with the Method of 
Moments with four candidate parametric distributions (exponential, gamma, lognormal, 
Weibull). 

• For each distribution function and health state, variance-covariance matrices were 
estimated applying a bootstrap re-sampling procedure.

From moments to cumulants
𝑐𝑐1(𝑋𝑋) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀[𝑋𝑋] Equation (1a)

𝑐𝑐2 𝑋𝑋 = 𝑉𝑉𝑀𝑀𝑉𝑉 𝑋𝑋 Equation (1b)

𝑐𝑐3 𝑋𝑋 = 𝑆𝑆𝑘𝑘𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 𝑋𝑋 ∗ 𝑉𝑉𝑀𝑀𝑉𝑉 𝑋𝑋
3
2 Equation (1c)

𝑐𝑐4(𝑋𝑋) = 𝐸𝐸𝐸𝐸𝑐𝑐𝑀𝑀𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝑉𝑉𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝑆𝑆[𝑋𝑋] ∗ 𝑉𝑉𝑀𝑀𝑉𝑉 𝑋𝑋 2 Equation (1d)

Study Name Use case Event outcome Health state
equivalent

Muntoni et al. 2013[6] Deriving the moments of ages for states 1-4 (Table 
2)

HERCULES health states States 1-4

McDonald et al. 2018[7] KM curve juxtaposition (Figure 3) Loss of ability to stand 
from supine

State 2

McDonald et al. 2018[7] KM curve juxtaposition (Figure 3) Loss of ambulation State 3

Bello et al. 2016[8] KM curve juxtaposition (Figure 3) Loss of ambulation State 3

McDonald et al. 2018[7] KM curve juxtaposition and derivation of moments 
for age of entry to state 5 (Table 2 and Figure 3)

Transition to FVC of 1L State 5

Broomfield et al. 2021[9] KM curve juxtaposition and derivation of moments 
for age of entry to Death (Table 2 and Figure 3)

Death State 6

Broomfield et al. 2024[3] KM curve juxtaposition (Figure 3) HERCULES health states States 2, 3, 5, 6

• The cumulants 𝑐𝑐𝑛𝑛 𝑋𝑋  of a 
random variable 𝑋𝑋, where 
the subscript “n” denotes 
the “order” of the 
cumulant, characterize 
distinct properties of 𝑋𝑋, and 
can be estimated in terms of 
the statistical moments (see 
Equations (1a)-(1d))

• Findings were similar across the gamma and lognormal distributions, with similar 
median ages at transition and alignment with published data. In contrast, models 
assuming an exponential distribution performed poorly and did not align with 
published data (Figures 3 and 4).

Health State
Mean 

Duration (years) SD (years) Skewness Excess Kurtosis
Early Ambulatory 10.27 2.42 0.98 2.44

Late Ambulatory 2.25 2.02 -0.62 -8.97

No Ventilator 2.00 2.23 -0.16 -17.50

Night-time Ventilator 6.77 5.46 1.0 1 -3.06

Full Ventilation 8.23 8.74 -0.09 -3.10

Health State Estimated alpha (SE) Estimated beta (SE)

Early Ambulatory 4.85 (0.02) 11.20 (0.14)

Late Ambulatory 1.12 (0.08) 2.34 (0.40)

No Ventilator 0.90 (0.15) 1.90 (0.82)

Night-time Ventilator 1.25 (0.11) 7.27 (1.55)

Full Ventilation 0.94 (0.09) 8.01 (1.86)

For each DMD milestone (a-d), the distribution of ages entering a given health state from simulating 
the exponential-, gamma-, lognormal-, and Weibull-based models for the corresponding age-at-event 
are shown in red, orange, green, and violet colors, respectively. The curve from Broomfield 2024 model fit is 
shown as dotted line in yellow color. The KM curves from the published sources are shown as a black curve. 

Notes:
[i] McDonald et al. (2018), Fig 1C, pooled data for patients with ≥1 year and <1 month of glucocorticoid use.
[ii] McDonald et al. (2018), Fig 1E, pooled data for patients with ≥1 year and <1 month of glucocorticoid use.
[iii] Bello et al. (2016), Fig 2, data for patients with other deletions mutations.
[iv] McDonald et al. (2018), Fig 4, data for patients who lost ambulation at ages 10-13 years.
[v] Broomfield et al. (2021), Fig 2B, data for patients born post-1990.
[vi] Broomfield et al. (2024), Fig 2, estimates from the fitted HERCULES NHM.

Notes:
• Skewness quantifies a distribution's asymmetry. A 0 value denotes perfect symmetry (e.g., 

normal distributions). Typically, skewness within -1 to 1 suggests moderate asymmetry, while 
a skewness of 2 characterizes exponential distributions.

• Excess kurtosis, defined as kurtosis minus 3, gauges a distribution's tail weight relative to a 
normal distribution, which has an excess kurtosis of 0. Exponential distributions show a 
heavier tail with an excess kurtosis of 6.
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