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Introduction ' Methods Model selected
! * For each fitted model, the age distribution of each health state transition was simulated to
| predict survival curves for each key DMD milestone event. The predicted curves were
. ) . . | c _ q c _ c c 5
o L.  Duchenne Muscular Dystrophy (DMD) is a rare, progressive genetic disorder that ' Data sources (Table 1) compared to published Kaplan-Meier (KM) using the Cramer von-Mises (CvM) distance.l]
H ed |t h State Tra nsS |t 10]8 P o ba bl I |t |1esS fO I causes muscle degeneration and weakness, starting in early childhood and leading !« Published aggregate data for the distribution of ages represented in each health ——— e e e —————————— -
to a deterioration of mobility, independence, and ultimately, early mortality.[!] ! state. IBox 1. Calculations :
D Uuc h enne M uscu I ar DySt ro p hy ( D M D) ; * Toinform health economic decision-making, a NHM of DMD disease progression !+ Published time-to-event curves for specific health state transitions, identified via © o e aumulEnis e, 00 o s |
across eight health states has been developed based on input from clinicians, ! targeted literature review. I random variable X, where T I
ESti m atiO n fro m P u b I iS h ed Data patients, and caregivers by Project HERCULES.[?] ' NHM | the subscript “n” denotes c1(X) = Mean[X] Equation (1a) :
. - T - - ! I the “order” of the X) = Varlx Equation (1b
The HERCULES model estimates the lifetime DMD disease trajectory through | . A condensed 5-state version of the HERCULES NHM was used in the present study ! o iz c,(X) = Var[X] 3 quation (1b) |
arEbu.Ia]:cory;]anlchChnon—ambl.JIator;/ f;eirl]thtstates, ;ESUII:CS :.rom thet moo(IjeIIOare,f!? pz:crt, ; (Figure 1), in which the levels of ventilation support were used to define states 3-5. | distinct properties of X, and ~ ¢3(X) = Skewness|X] « Var|X] Equation (1c) :
d DASIS TOr nea economiC models that assess the liretime COStS an enerits o . . . i i = ] * 2 '
OMD treatment 3 | * The model assumes sequential progression through health states, with no backwards : f;‘” btet‘?stt_'m?ted n tetm(“s of  cal¥) = ExcessKurtosis[X] « VarlX]" Equation (1d) I
: I " ) e statistical moments (see
transitions between states (Figure 2). | : I
* Estimation of transition probabilities for the HERCULES model, i.e., the rates at : Estimation of transition brobabilities , Equations (1a)-(1d)) |
. . which DMD patients progress through the different health states, is critical for ; . o p _ I * Thenthorder cumulant of times spent within states, ¢,,(Dy), can be deduced from the I
O bJ eCt Ve appropriate use in decision making. Inaccurate transition probabilities can lead to ) © Four candidate distributions were evaluated: exponential, gamma, lognormal and I cumulants of ages of entry, since Tj,.; = Ty + Dy, for any health state k (see Figure 2), I
. . . : e ) |
. . h d b . f . . h inaccurate technology appraisals. : Weibull. | | i ; . h - : and T;, is independent of D, (Markov property), using the additivity of cumulants: |
O estimate the distribution of time spent in eac * Previous estimates using traditional methods do not align with published literature ! FRIRIFIES @Elziel wes bessel e a.met e OF MU approa{g} » €xploiting a , cn(Dy) = cn(Ti41) — cn(Ti) Equation (2) !
health state before progressing to the next for a on key milestones in NH.B! 1 SlENSHER) FrefpErly o W@y mesiels: Uis 20 e iy 6if el T, ! :
: : . " L " e L 1 * Empirical moments, e.g., mean and variance, for the distribution of times between I« After computing the cumulants of the times between state transitions, c,,(Dy,), estimation
condensed version Of H ERCULES Natural Hlstory Traditional approaches. e (?stlmatlng transmo.nal prObablhtleS have_ t,)een Ilm,lted_ by : each health state transition were calculated from ageregate data on the distribution | of their statistical moments were computed using the same relations betnween cumulants !
: the sparseness of longitudinal data representing health state transitions, which is a ! seres : : I
Model (NHM) in DMD S : ' : of ages in each health state (see Box 1) I and moments in Equations (1a)-(1d).
common challenge, especially in rare disease. ; _ . _ g _ . I+ With the estimated moments of times between state transitions, their associated I
1 * Variance-covariance matrices were estimated by applying a bootstrap re-sampling | probability distributions were estimated for each health state using with the Method of I
: procedure. | Moments with four candidate parametric distributions (exponential, gamma, lognormal, '
l | Weibull). |
C I " : | * For each distribution function and health state, variance-covariance matrices were !
onciusions I_ _ _estimated applying a bootstrap re-sampling procedure. _ _ _ _ _ _ _ _ _ _ _ _ !
Drawing on heterogeneous sources of published - : : : : o
5 on 5 pub’ Table 1: Data sources for summary age statistics and age-at-event curves for health Figure 2: Times and ages associated with the transitions between
data and using the cumulant method to bridge the states and DMD milestones Figure 1: Health states and disease model used in the present study states
data gaps, we obtained new estimates of health Health state
L o Study Name Use case Event outcome equivalent
State tra nSItI On prOba bl | Itles fo r th e H E RCU LES N H M q :"""'""'""""""""""""""""""': :' """""""""""""""""""""""""""""""""""""""" ! State 0 State 1 State 2 State 3 State 4 State 5
. . . Muntoni et al. 2013!6! Deriving the moments of ages for states 1-4 (Table HERCULES health states States 1-4 i Ambulatory i Non-ambulatory i I I
of DMD. These new estimates were consistent with 2) ; 1 ; | — Age
multiple published sources and represent McDonald et al. 20187 KM curve juxtaposition (Figure 3) ::;;qui?::v tostand  State 2 ' ( Ambulstory mbulatory TP, ventiato Ventiotor Ventiation )| To=Birth T, n T T, T, Death
I provements to the RUCHIEL estimates. McDonald et al. 201871 KM curve juxtaposition (Figure 3) Loss of ambulation State 3 i H i
i Abletorise from supine Not able torise from supine | | . < z < i
The congruence between our estimates and Bello et al. 20168 KM curve juxtaposition (Figure 3) Loss of ambulation State 3 EL Abletowalkio meters  Abletowalk 10 meters ii e R sIR A e i
. . : " L T e Note: T, denote “entry times” which are the ages at which patients enter a health state. D,
mUItI |e UbllShEd sources su ort the use McDonald et al. 201871 KM curve juxtaposition and derivation of moments Transition to FVC of 1L  State 5 _ . " e . . v . ” .
. P pf hic health PP del hasis f for age of entry to state 5 (Table 2 and Figure 3) Note: Death is the final state after Full Ventilation. (Dkth 7;’f+1 Ty (:enf:;c].e IenithtOI Stayé Interar"crlv?ll O!u;atlonij’ O’: _Ifl?oum tlTe:’ ’dWhICh
est|mates rom t IS hea t State model as a basis tor _ _ - o are tne times spent within eacn state, ana are mutually inaependadent. e current stuay
. . Broomfield et al. 20211 KM curve juxtaposition and derivation of moments Death State 6 o . . . assumed patients enter the model through State 1 (Early Ambulatory) at birth, i.e.,
cost-effectiveness ana|ys|s and health techn0|ogy for age of entry to Death (Table 2 and Figure 3) Abbreviations: FVC%p; Forced vital capacity percent predicted. T, = Dy = 0
. _ : 3] : " :
appraisa |S in DMD. Broomfield et al. 2024 KM curve juxtaposition (Figure 3) HERCULES health states States 2, 3,5, 6
Results
i iti i i i istributi i Table 3: Estimated parameters (alpha and beta) and standard
+ The estimated mean (standard deviation [SD]) duration times (in years) that patients Figure 3. Juxtapositions of the fitted .model.assummg different distributions against <E) fon 'bp Kt t(' o ° o .) e
spend within health states are 10.27 (2.42), 2.25 (2.02), 2.00 (2.23), 6.77 (5.46) and benchmark KM curves from the published literature errors ( ) for Weibu IStribution characterizing the duration
8.23 (8.74) for states 1-5, respectively (Table 2). times (in years) spent within health states
:  The best overall fit to the data was provided by the Weibull-based model, as il i i i )
Prese nting a Uthor: ’ (a) Loss of ability to stand from supine vs. Entry to late (b) Loss of am_bulatlon vs. Entry to first non-ambulatory . .
5 quantified by the CvM distance between simulated age-at-event curves and published ambulatory State state (no ventilator) Health State Estimated alpha (SE) Estimated beta (SE)
Nathanial p KM curves for equivalent DMD milestones (Figure 3). The estimated 24 — — MecDonald 2018 {1] | J i —. g”;ﬁ,";g;‘gz[i‘;;“‘” Early Ambulatory 4.85 (0.02) 11.20 (0.14)
athaniel Posner Weibull parameters are shown in Table 3. \

. . : : - . : . 2 - - \ 1.12 (0.08 2.34 (0.40
Director, HTA, Value & Evidence Strategy * Simulated median transition ages in the Weibull-based model for key DMD milestones e Late Ambulatory ( ) ( )
Pfizer, Inc., New York, NY, USA were 12.4 years (95% Cl: 6.6, 19.0) for loss of ambulation, 20.4 years (95% Cl: 11.1, o _ | No Ventilator 0.90 (0.15) 1.90 (0.82)
Nathaniel.Posner@pfizer.com 37.4) for start of full-time ventilation, and 27.6 years (95% Cl: 14.1, 57.6) for death. _ _ _ 195 (0.11 7 97 (1 55

' P ' These results are consistent with recent published literature.l7-11] < _ Night-time Ventilator -25(0.11) 27 (1.55)
* Findings were similar across the gamma and lognormal distributions, with similar Full Ventilation 0.94 (0.09) 8.01 (1.86)
median ages at transition and alignment with published data. In contrast, models 2 ° i
. . . . . . . . o . i i -
assuming an exponential distribution performed poorly and did not align with s - | _ Note.. Standard (.arrorst were computed from the dlagona.I elements of the variance
e oublished data (Figures 3 and 4). w o | | | | | | | | . | | covariance matrix estimated through bootstrap resampling method.
@ (c) Transition to FVC of 1L vs. Entry to full ventilation state (d) Death vs. Entry to death state
. : : : « .. .« . . A O . . .
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For each DMD milestone (a-d), the distribution of ages entering a given health state from simulating
the exponential-, gamma-, lognormal-, and Weibull-based models for the corresponding age-at-event
are shown in red, orange, green, and violet colors, respectively. The curve from Broomfield 2024 model fit is
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