UNIVERSITY of MARYLAND School of Pharmacy

JOHNS HOPKINS BLOOMBERG SCHOO of PUBLIC HEALTH

Introduction

Zuranolone is an intervention in clinical development for the treatment of MDD and postpartum depression. As a neuroactive steroid, it was developed to overcome the unfavorable side effect profile, dosage schedule, and route of administration of its sister medication brexanolone (Eldar-Lissai et al, 2020).

Methodology

Model structure:

- 1. 1st stage: 2-week decision tree with four outcomes: remission (HAMD < 7), response without remission (HAM-D score) reduction more than 50% from baseline), no response, or dropout.
- 2. 2nd stage: Markov model run in 6- week cycles for a total of 49 weeks.

Intervention: 30mg zuranolone administered daily for a single-14-day cycle.

Comparator: Mirtazapine administered daily.

Population: 29-year-old patients with severe major depressive disorder.

<u>Perspective</u>: US healthcare perspective.

<u>Time horizon</u>: 1 year.

Efficacy-extrapolation: Studied were pooled comparing either intervention to placebo to generate a hypothetical placebo population. A baseline placebo rate for each response type was calculated and the relative risk of each response type in either intervention vs placebo were computed based off comparative statistics using R. Efficacy parameters for zuranolone were extracted from the recent MOUNTAIN trial, SAGE-217, and other phase II and III trials.

Costs: Zuranolone costs were based off its wholesale acquisition cost \$15,900 for a 14-day cycle. Daily mirtazapine treatment was assumed to cost \$4.99 based off US Medicare fee schedules. Annual inpatient, outpatient, ER-related costs, SSRI, and counseling costs were also calculated for each health state. Costs are presented in 2022 USD.

Outcomes: Quality-adjusted life years. Cost effectiveness conclusions were determined off WTP thresholds from \$50,000-\$150,000. Net monetary benefit for each intervention at WTP thresholds of \$50,000 and \$100,000 were also calculated.

Sensitivity analyses: Both deterministic and probabilistic sensitivity analyses were conducted.

Assumptions:

- 1. 28% and 11% of the zuranolone and mirtazapine cohorts respectively received daily SSRI therapy in line with clinical trial observations.
- 2. Singular remission state and in consequence, a single utility weight for patients in the remission health state.
- 3. Transition probabilities from remission or response without remission to no response based off the STAR*D study.

Table 1. Model input parameters

A Cost Utility Analysis of Zuranolone in the **Treatment of Major Depressive Disorder**

Kim H, MHS¹; Cheng SY, MHS²; Ballreich J, PhD, MHS²; Levy J, PhD²

¹Department of Practice, Sciences, and Outcomes Research , University of Maryland, Baltimore ²Department of Health Policy & Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD

Inputs

Parameters	Base Case	Range for DSA	Distribution	Citation
nolone: 14 day course	\$15,900	\$7,500- \$30,000	Log Normal	Eldar-Lissai et al, 2020
azapine: daily	\$4.99	\$2.7 - \$7.34	Gamma	US Medicare Fee Schedule
: 6 weeks	\$6.42	\$5.13 - \$7.70	Gamma	Eldar-Lissai et al, 2020
oatient: annual costs				
esponse	\$8,690.85	\$6,952.68 - \$10,429.02	Gamma	Greenberg et al, 2021
oonse without remission	\$6,952.68	\$5,562.144 - \$8,343.22	Gamma	Greenberg et al, 2021 Bains et al, 2023
ission	\$4,523.40	\$3,618.72 - \$5,428.08	Gamma	Greenberg et al, 2021
tient: annual costs				
response	\$3,966.90	\$3,173.52 - \$4,760.28	Gamma	Greenberg et al, 2021
oonse without remission	\$3,173.52	\$2,538.82 - \$3,808.22	Gamma	Greenberg et al, 2021 Bains et al. 2023
nission	\$1,620.15	\$1,296.12 - \$1,944.18	Gamma	Greenberg et al, 2021
annual costs				
response	\$1,184.40	\$947.52 - \$1,421.28	Gamma	Greenberg et al, 2021
oonse no remission	\$823.73	\$659.98 - \$988.47	Gamma	Greenberg et al, 2021
	¢E40.1E	¢120.2 ¢658.98	Gamma	Bains et al, 2023 Greenberg et al. 2021
IISSION	\$547.15	\$437.3 - \$030.70	Gamma	Puvat et al. 2016
nseling: annual	\$2,310.00	\$1,848 - \$2,772	Gamma	Ross et al, 2019
ty				
eline	0.410	0.253 - 0.589	Gamma	Pyne et al, 2009
nge: remission	0.120	0.014 - 0.363	Gamma	Pyne et al, 2009
nge: response without remission	0.120	0.014 - 0.363	Gamma	Pyne et al, 2009
nge: no response	0.050	0.002 - 0.219	Gamma	Pyne et al, 2009
sition Probabilities (week 0 to 6)				
nolone				
ission	0.692	0.175 - 0.376	Beta	Clayton et al, 2023
bonse	0.254	0.0224 - 0.198	Beta	Clayton et al, 2023
response	0.055	0.419 - 0.813	Beta	Clayton et al, 2023
azapine				Ciprioni at al. 2018
ission	0.424	0.35 - 0.64	Beta	Stahl et al, 1997
oonse	0.183	0.05 - 0.51	Beta	Cipriani et al, 2018
				Cipriani et al. 2018
response	0.394	0.206 - 0.60	Beta	Stahl et al, 1997
sition Probabilities (weeks 6 to 48)				
				Penninx et al, 1999
ission to no response	0.046	0.04 - 0.08	Beta	Questions, 2023
oonse without remission to no response	0.097	0.08 - 0.19	Beta	Penninx et al, 1999 Ouestions, 2023
ission to death	0.005	0.003 - 0.006	Beta	Penninx et al, 1999
	0.000			Questions, 2023 Penninx et al. 1999
oonse without remission to death	0.008	0.006 - 0.013	Beta	Questions, 2023
response to death	0.007	0.006 - 0.008	Beta	Penninx et al, 1999 Questions, 2023

Figure 1. 2-part model structure

MODEL APPROACH

References

26(5), 627–638. <mark>ht</mark>

Cipriani, A., Furukawa, T. A., Salanti, G., Chaimani, A., Atkinson, L. Z., Ogawa, Y., Leucht, S., Ruhe, H. G., Turnei E. H., Higgins, J. P. T., Egger, M., Takeshima, N., Hayasaka, Y., Imai, H., Shinohara, K., Tajika, A., Ioannidis, J. P. A., & Geddes, J. R. (2018). Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet (London, England), 391(10128), 1357–1366. https://doi.org/10.1016/S0140-6736(17)32802-7

Clayton, A. H., Lasser, R., Nandy, I., Sankoh, A. J., Jonas, J., & Kanes, S. J. (2023). Zuranolone in Majo Depressive Disorder: Results From MOUNTAIN—A Phase 3, Multicenter, Double-Blind, Randomized, Placebo Controlled Trial. The Journal of Clinical Psychiatry, 84(2), 45750. <u>https://doi.org/10.4088/JCP.22m14445</u> Bains, N., & Abdijadid, S. (2023). Major Depressive Disorder. In StatPearls. StatPearls Publishing

Eldar-Lissai, A., Cohen, J. T., Meltzer-Brody, S., Gerbasi, M. E., Chertavian, E., Hodgkins, P., Bond, J. C., 8 Johnson, S. J. (2020). Cost-Effectiveness of Brexanolone Versus Selective Serotonin Reuptake Inhibitors for the

Freatment of Postpartum Depression in the United States. Journal of Managed Care & Specialty Pharmacy

Penninx, B. W. J. H., Geerlings, S. W., Deeg, D. J. H., van Eijk, J. T. M., van Tilburg, W., & Beekman, A. T. F (1999). Minor and Major Depression and the Risk of Death in Older Persons. Archives of General Psychiatry, 56(10), 889–895. https://doi.org/10.1001/archpsyc.56.10.889

Puyat, J. H., Kazanjian, A., Goldner, E. M., & Wong, H. (2016). How Often Do Individuals with Major Depression Receive Minimally Adequate Treatment? A Population-Based, Data Linkage Study. Canadian Journal of Psychiatry. Revue Canadienne de Psychiatrie, 61(7), 394–404. https://doi.org/10.1177/0706743716640288

Pyne, J. M., Fortney, J. C., Tripathi, S., Feeny, D., Ubel, P., & Brazier, J. (2009). How Bad Is Depression Preference Score Estimates from Depressed Patients and the General Population. Health Services Research 44(4), 1406–1423. https://doi.org/10.1111/j.1475-6773.2009.00974.x

RESUITS										
Table 2. Base case results after 1 year										
Intervention	Costs per Patient	QALYs per Patient	Incremental Costs per Patient	Incremental QALYs per Patient	ICER	NMB 50K	NMB 100K			
Zuranolone	\$22,236	0.56	\$12,520	0.043	\$287,441	\$5,741	\$33,717			
Mirtazapine	\$9,716	0.52	-	-	-	\$16,083	\$41,881			

acceptability curve

- The one-year costs and QALYs of zuranolone were \$22,236 and 0.56 per patient and \$9,716 and 0.52 per patient for mirtazapine, for an ICER of \$287,442.
- Results were most sensitive to drug cost, relative risk of remission, and remission health-state utility. In sensitivity analyses, zuranolone was the preferred treatment in 15% of the total draws under a willingness to pay threshold of \$100,000.
- The Zuranolone cohort incurred most of its costs in the first part of the model with cost savings observed in the Markov model due to the single 14-day-treatment-cycle strategy.
- The Mirtazapine cohort incurred most its costs in the second part of the model.
- 69% and 42% of the patients in the Zuranolone and Mirtazapine respectively reached remission in the first stage, followed by 37% and 23% in the second stage.

Conclusions

Zuranolone's biggest appeal come from its short use and the potentially sustained effect over 6 months to a year. Treatment duration has significant implications on patient adherence to MDD medication, which is one of the main drivers for improved health outcomes in this disease space. However, given its efficacy profile in MDD patients according to the MOUNTAIN trial, zuranolone's current price should reflect a balance between its short-use duration and treatment efficacy.

Figure 2. Results of 1,000 iterations of probabilistic sensitivity analyses: Cost effectiveness