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Conclusion
Health economists commonly employ MCMs, especially in 
chronic disease modelling, due to their simplicity and ease 
of development. Health economics analyses typically require 
MCMs to reach a unique equilibrium so that expected values can 
be estimated for each intervention modelled.

If MCMs produce binomial (or higher) distributions, average 
costs and benefits for each treatment will be meaningless, and 
ICER calculations misleading as MCMs are used to model the 
path from a system’s starting equilibrium to its steady-state 
position. If they are unable to map the path of convergence 
to stability, MCMs may fail to meet their purpose, and their 
construction should be examined and questioned. 

Ergo, consideration for ergodicity in model conceptualisation 
and execution is crucial. Even where it is not viable for the MCM 
to be ergodic, lessons from ergodic MMs, such as the elimination 
of artificial linkages and sub-systems, can be implemented to 
improve non-ergodic MCMs.

Introduction
 Markov Chains 

Health economists regularly utilise MMs to help construct Cost-
Effectiveness Models (CEMs) for a whole range of diseases and 
conditions, including prevention programmes, diagnostics, policy, 
treatments, and rehabilitation. Among the four types, Markov Chains 
(MCs) have emerged as the most popular choice of MM used by health 
economists building CEMs, with Hidden Markov models being used 
on rare occasions. In this paper, we use MC to represent the general 
concept and mathematical formulation of the memory-less stochastic 
process, while Markov Chain Model (MCM) specifically refers to the real-
world application of the approach.

Health economists commonly use MCMs to simulate the dynamic 
progression of patient cohorts described in terms of connected health 
states. This information is then used to generate cost and benefit data for 
inclusion in CEMs and sophisticated BIMs.

• Formally, an n-state MC can be defined as a tuple (S, P), where:

• S is the set of possible states that the system can be in.

• P is the transition probability matrix is an n · n matrix, where pi,j 
represents the probability of transitioning from state si to state sj in  
one step.

• P must satisfy the following conditions:

• Pi,j ≥ 0: Transition probabilities are non-negative.

•   = 1: The sum of probabilities for all possible 
transitions from state i is 1.

During simulations, MCMs cycle through identified sets of states, 
S, guided by associated matrices of probabilities, P. This results in 
stochastic processes that describe the sequence of states that systems go 
through as they change. In an MCM, the analysis starts with knowledge 
of S and P only. The particular values that a random MCM will take are, 
a priori, unknown. Symbolically, random variables are usually denoted 
using uppercase letters, while the particular values that they realise are 
usually denoted by lowercase letters. For instance, we denote a random 
variable by X to represent the MC, with function X(t) representing its 
stochastic process. After we know the S and P values, we can calculate 
the probability distribution, λ; ergo, λs,t = P(X(t) = s) = the probability 
distribution of patients in state s at time t. Additionally, the sequence  
of X(0),X(1),...,X(T) must satisfy the rule of conditional independence  
such that:

P(X(t + 1) = St+1|X(t) = St) = P(X(t + 1) = St+1|X(0) = S0,X(1) = S1,...,X(t) = St)

This assumption of independence, also known as the Markov or 
memory-less property, is useful analytically because, by ignoring history, 
computational complexity can be reduced. This, in turn, can reduce the 
data required for modelling. Combined, these benefits often make MCs 
simpler and easier to build than many other model types, particularly if 
meaningful probabilities can be assigned to state transitions. 

Introduction (continued)
 Ergodicity 

An MC is a stochastic process that evolves through a sequence of 
states, transitioning from one state to another based on transition 
probabilities. The dynamics of an MCM are completely captured by its 
initial distribution (that is, the probability distribution, λ, that describes the 
probabilities of starting the chain in each possible state at the beginning 
of the process) and its TPM, P. The initial distribution sums to 1, reflecting 
the certainty that the chain must start in one or more of the possible 
states. The starting position is crucial in determining the behaviour of 
MCMs, especially in the initial steps of the process. As they cycle, MCMs 
tend to converge to a stationary distribution regardless of their initial 
position. However, building MCMs with both initial distributions and 
transition probabilities that each sum to one does not, by itself, ensure 
that the stochastic process will:

• Converge on a unique distribution where all states have a > 0 
distribution probability.

Understanding the difference between stationary and unique 
distributions is important. The former occurs when MCMs settle into 
a long-term distribution, but this does not necessarily mean that the 
distribution has a single central location. MCMs can produce binomial 
(or higher) distributions where more than one state becomes prominent. 
In contrast, unique distributions occur when stationary distributions 
have only one central location. Unless they reach a unique distribution, 
MCMs can fail to be analytically useful. For instance, Therefore, testing 
for ergodicity (and examining its potential causes) is a task that model-
building health economists should perform before using MCMs as 
drivers for their CEMs. An MCM is ergodic if it satisfies two conditions:

• Irreducibility: An MC is irreducible if it is possible to reach any state 
from any other state in a finite number of steps. In other words, there 
should be no isolated states or subsets of states that cannot be reached 
from the rest of the states.

•  : The sum of probabilities for each  
state j is positive.

• Aperiodicity: An MC is aperiodic if it lacks regular patterns or cycles 
in its state transitions. Thus, the chain will eventually revisit any state, 
irrespective of the initial state, without following fixed or predictable 
patterns.

If the conditions of irreducibility and aperiodicity are satisfied, then an 
MCM is ergodic and will settle into a unique stationary distribution. 
Over time, the probabilities of being in each state will converge to the 
stationary distribution, regardless of the initial state. The shape of the 
Markov trace should show an unhindered path from convergence to 
steady state, which occurs because the MCM is ergodic.

Introduction
Demonstrate the importance of ergodicity in building health economics 
models in terms of model stability and results reliability.

Methods
Through a series of simulation MCMs in R, the importance as well  
as impact of ergodicity on model structure and common pitfalls  
were identified.

Results
 Example Ergodic MCM

The table below represents the transition probability matrix for an 
example ergodic MCM. As it is possible to reach any state from any other 
state in a finite number of steps, the MCM is irreducible.

To State
State A State B State C

From State
State A 0.7 0.2 0.1
State B 0.3 0.4 0.3
State C 0.2 0.5 0.3

Figure 1 below showcases the shape of the Markov trace that is an 
unhindered path of convergence from λ to steady state, which occurs 
because the MCM is aperiodic. The irreducibility and aperiodicity shown 
verify the ergodicity of the example MCM.

Figure 1: Markov Trace for Example Ergodic MCM
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Common Pitfalls Preventing Ergodicity

1   Absorbing States / Dangling Nodes

An absorbing state, also known as a dangling node, within the chain that 
acts as a dead end, which is characterised by transitions leading into 
the state from other state(s) but lacking transitions out, so the process 
becomes trapped, represented by the absorbing state D. Therefore, for 
at least one state, s ∈ S, the sum of probabilities for all possible transitions 
from state s is 0: 0 = .

2   Artificial Linkages / Sub-Systems

A sub-system is present as the transition connecting the main system 
to the sub-system (containing states H, F, & J) will affect the patterns of 
movement, as well as the convergence of the overall stochastic process. 
This may impact aperiodicity.

If the transitions between state B and state H are not direct relationships, 
an artificial linkage would be present, thus not observable in practice.

 Validation with Non-Ergodic MCM

In scenarios where the model is non-ergodic due to an absorbing state 
is required, such as the specific inclusion of a death state due to the 
implementation of health state-specific mortality instead of an aggregate 
mortality rate applied to the population as a whole or in oncology 
modelling, it is still possible to validate would otherwise be ergodic 
by substituting the transition probabilities array for each state, s ∈ S, 
where the 0 =  with the probability distribution, λ, that 
describes the probabilities of starting the chain in each possible state at 
the beginning of the process.
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