Targeted learning to generate real world evidence

Mark van der Laan

TL in Data Science

Roadmap for Causal Inference

TMLE and HAL

Concluding Remarks

Targeted learning to generate real world evidence

Mark van der Laan

Jiann-Ping Hsu/Karl E. Peace Professor in Biostatistics & Statistics University of California, Berkeley

ISPOR, May 6, 2024, Atlanta

Acknowledgements: Maya Petersen, Rachael Phillips, Susan Gruber, Ivana Malenica

Poll Question 1

Targeted learning to generate real world evidence

Mark van der Laan

TL in Data Science

Roadmap fo Causal Inference

TMLE and HAL

Concluding Remarks It's Time for a Poll!

1. What are your biggest concerns with RWE as a source of evidence for causal inference?

a) No concerns, it helps address gaps from clinical trials

b) Concerns with confounding

c) Concerns with acceptability by decision makers

d) Concerns with lack of fit-for-purpose data sources

e) Other concerns

Poll Question 2

Targeted learning to generate real world evidence

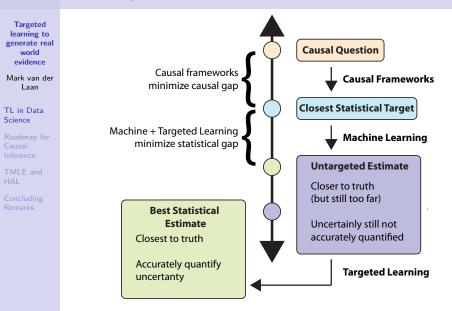
Mark van der Laan

TL in Data Science

Roadmap fo Causal Inference

TMLE and HAL

Concluding Remarks It's Time for a Poll!


2. How familiar are you with causal inference methods for real world data?

a) Not at all familiar

b) Somewhat familiar

c) Very familiar with traditional methods

 Very familiar with traditional and doubly-robust machines learning based methods such as augmented inverse probability of treatment weighting and targeted maximum likelihood estimation (A-IPTW/TMLE) Targeted Learning for answering statistical and causal questions with confidence intervals

Targeted Learning is a subfield of statistics

Targeted learning to generate real world evidence

Mark van der Laan

TL in Data Science

Roadmap fo Causal Inference

TMLE and HAL

Concluding Remarks

van der Laan & Rose, *Targeted Learning: Causal Inference for Observational and Experimental Data.* New York: Springer, 2011.

van der Laan & Rose, Targeted Learning in Data Science: Causal Inference for Complex Longitudinal Studies. New York: Springer, 2018.

The Hitchhiker's Guide to the tlverse

Better clinical decisions from observational data

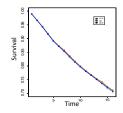
Targeted learning to generate real world evidence

Mark van der Laan

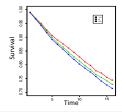
TL in Data Science

Roadmap for Causal Inference

TMLE and HAL

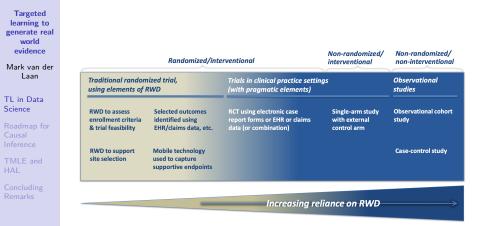

Concluding Remarks

Statistics in Medicine


In Medicine Research Article
Received 24 May 2013, Accepted 5 January 2014 Published online 17 February 2014 in Wiley Online Library
(wilevonlinelibrary.com) DOI: 10.1002/sim.6099

Targeted learning in real-world comparative effectiveness research with time-varying interventions

Romain Neugebauer, $^{a\ast \dagger}$ Julie A. Schmittdiel^ and Mark J. van der Laan^b



Standard methods: No benefit to more aggressive intensification strategy

Targeted Learning: More aggressive intensification protocols result in better outcomes

Statistical challenges with RWD

Statistical challenges with RWD

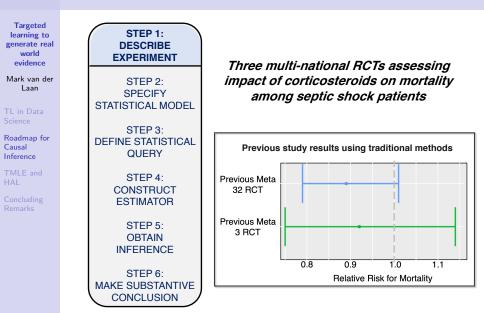
Targeted learning to generate real world evidence

Mark van der Laan

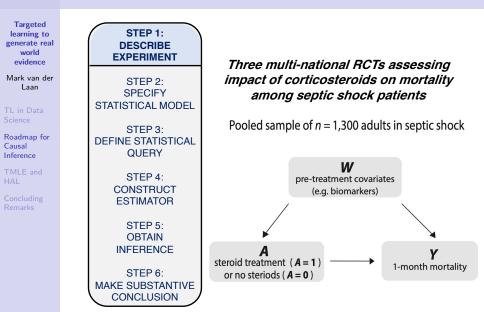
TL in Data Science

Roadmap for Causal Inference

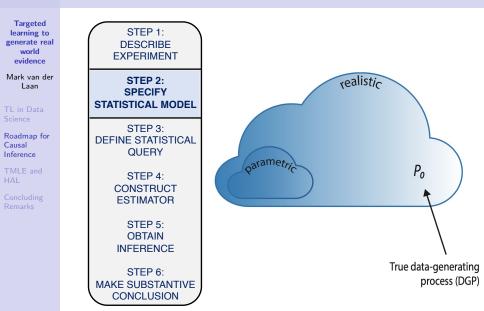
TMLE an HAL

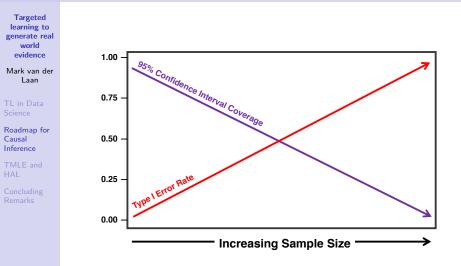

Concluding Remarks

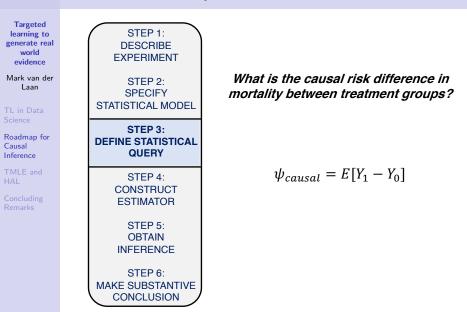
Randomized/interventional			Non-randomized/ interventional	Non-randomized/ non-interventional Observational studies
Traditional randomized trial, using elements of RWD		Trials in clinical practice settings (with pragmatic elements)		
RWD to assess enrollment criteria & trial feasibility	Selected outcomes identified using EHR/claims data, etc.	RCT using electronic case report forms or EHR or claims data (or combination)	Single-arm study with external control arm	Observational cohort study
RWD to support site selection	Mobile technology used to capture supportive endpoints			Case-control study
RWD Challen	iges			
Selection bias		Targeted Learning		
 Intercurrent events Informative missingness 		decision making		
Treatment by i	ndication			
High dimensio				
	lel misspecification			
Differences be				
controls and si	ngle trial arm RCT			

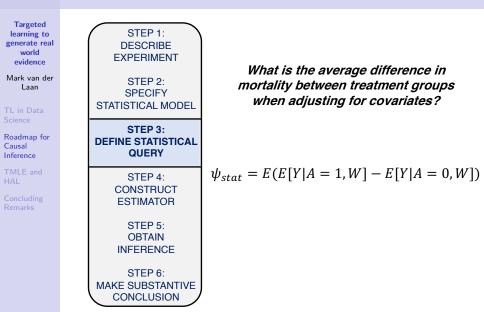

The roadmap for learning from data

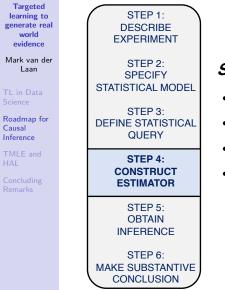
Targeted STEP 1: learning to generate real DESCRIBE world **EXPERIMENT** evidence Mark van der STEP 2 Laan SPECIFY STATISTICAL MODEL STEP 3 Roadmap for **DEFINE STATISTICAL** Causal QUERY Inference STEP 4: CONSTRUCT **ESTIMATOR** STEP 5: OBTAIN **INFERENCE** STEP 6: MAKE SUBSTANTIVE CONCLUSION


What is the experiment that generated the data?

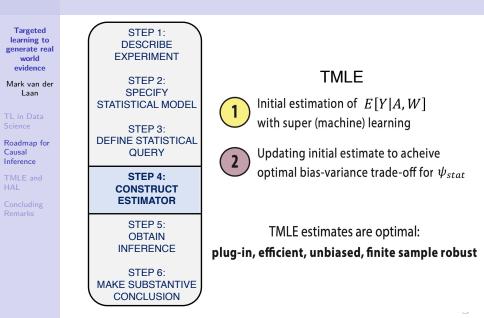

What is the experiment that generated the data?

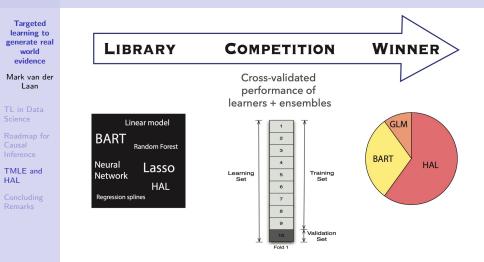

What is known about stochastic relations of the observed variables?


What happens when the statistical model is misspecified and does not contain the DGP?


Step 3a: What is the target causal estimand that we aim to identify from the data?

Step 3b: What is the target statistical estimand that we will learn from the data?


How should we estimate the target estimand?


Statistical properties to consider

- · Substitution / plug-in
- Valid inference
- Efficiency
- Ability to optimize finite sample performance

Targeted Maximum Likelihood Estimation (TMLE)

TMLE Step 1: Super learner

Hugely advantageous when coupled with NLP-derived covariates with EHR

Highly Adaptive Lasso (HAL)

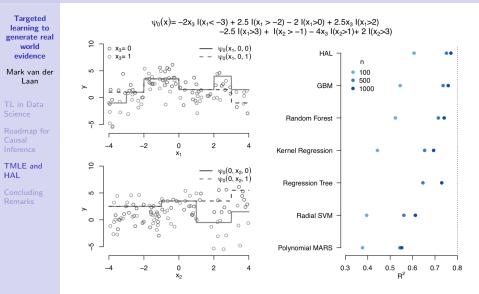
Targeted learning to generate real world evidence

Mark van der Laan

TL in Data Science

Roadmap for Causal Inference

TMLE and HAL


Concluding Remarks

Key Idea

- Any *d*-dimensional cadlag function (i.e. right-continuous) can be represented as a possibly infinite linear combination of spline basis functions.
- The variation norm / complexity of a function is the L₁-norm of the vector of coefficients.

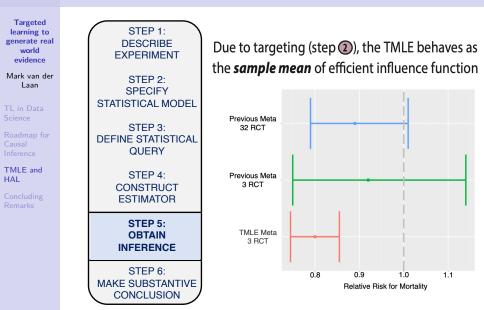
Converges to true function at rate $n^{-1/3}(\log n)^{d/2}$

HAL performance for d=3

TMLE Step 2: Targeting follows a path of maximal change in target estimand per unit likelihood

Targeted learning to generate real world evidence

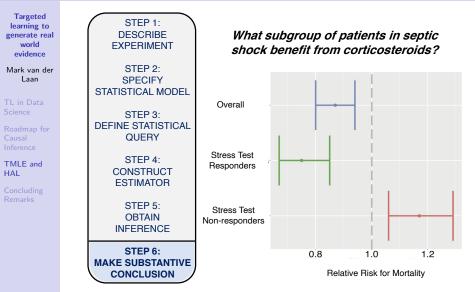
Mark van der Laan

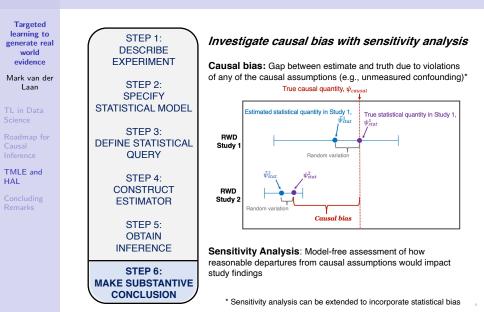

TL in Data Science

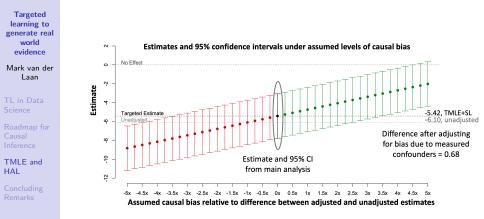
Roadmap for Causal Inference

TMLE and HAL

Concluding Remarks


How should we approximate the sampling distribution of our estimator?


Can we break HAL-TMLE?


Possibility to refine question of interest and inform future studies

Arriving at the substantive conclusion

TL-based non-parametric sensitivity analysis RCT with 25% LTFU example

Courtesy of "Targeted-Learning Based Statistical Analysis Plan" Webinar by Susan Gruber on 28 April 2021

< 🗗 ▶

Targeted Learning with RWD

Targeted learning to generate real world evidence

Mark van der Laan

TL in Data Science

Roadmap for Causal Inference

TMLE and HAL

Concluding Remarks

Randomized/interventional			Non-randomized/ interventional	Non-randomized/ non-interventional
Traditional random using elements of R		Trials in clinical practice settings (with pragmatic elements)		Observational studies
RWD to assess enrollment criteria & trial feasibility	Selected outcomes identified using EHR/claims data, etc	RCT using electronic case report forms or EHR or claims data (or combination)	Single-arm study with external control arm	Observational cohort study
RWD to support site selection	Mobile technology used to capture supportive endpoints			Case-control study
 Selection bias Intercurrent events 			 inference ✓ Realistic statis ✓ Statistical estir answer to caus 	ausal and statistica tical model nand approximates sal question ation and dimensior Super Learner suitivity analysis

Concluding Remarks

Targeted learning to generate real world evidence

Mark van der Laan

TL in Data Science

Roadmap for Causal Inference

TMLE and HAL

Concluding Remarks

- Roadmap for causal inference and Targeted Learning provides systematic principled approach for generating RWE.
- Integrates all advances in machine learning, statistical theory and causal identification.
- SL and TMLE can be tailored towards particular estimation problem in pre-specified manner using outcome blind simulations.

Poll Question 3

Targeted learning to generate real world evidence

Mark van der Laan

TL in Data Science

Roadmap fo Causal Inference

TMLE and HAL

Concluding Remarks It's Time for a Poll!

3. What is the key feature of doubly robust methods based on machine learning?

- a) Only one model fits (among treatment/censoring mechanism, and outcome regression) needs to be correct
- b) Super learning ends up with better algorithm for fitting these regressions than any one algorithm
- c) Doubly-robust ML-based methods have a higher likelihood of getting a correct effect estimate
- d) All of the above