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It’s Time for a Poll!

1. What are your biggest concerns with RWE as a source of
evidence for causal inference?

a)
b)
<)
d)

€)

No concerns, it helps address gaps from clinical trials
Concerns with confounding

Concerns with acceptability by decision makers
Concerns with lack of fit-for-purpose data sources

Other concerns

«F



It’s Time for a Poll!

2. How familiar are you with causal inference methods for
real world data?
a) Not at all familiar
b) Somewhat familiar
c) Very familiar with traditional methods
d) Very familiar with traditional and doubly-robust machines
learning based methods such as augmented inverse

probability of treatment weighting and targeted maximum
likelihood estimation (A-IPTW/TMLE)
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Targeted Learning for answering statistical and
causal questions with confidence intervals
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Causal frameworks
S Causal Frameworks
minimize causal gap

<> [Closest Statistical Target]

Machine + Targeted Learning Machine Learnin
minimize statistical gap 9

() Untargeted Estimate

Closer to truth
(but still too far)

Best Statistical
Estimate Uncertainly still not
Closest to truth accurately quantified

Accurately quantify )
uncertanty Targeted Learning
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Targeted Learning is a subfield of statistics
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Targeted learning in real-world
comparative effectiveness research with
time-varying interventions

Romain Neugebauer,”*" Julie A. Schmittdiel* and
Mark J. van der Laan
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Standard methods: No benefit to more Targeted Learning: More aggressive intensification
aggressive intensification strategy protocols result in better outcomes




Targeted
learning to
generate real
world
evidence

Mark van der
Laan

TL in Data
Science

Roadmap for
Causal
Inference

TMLE and
HAL

Concluding
Remarks

Statistical challenges with RWD

N i od/
Randomized/interventional inter /
Traditional randomized trial, Trials in clinical practice settings
using elements of RWD 'with pragmatic elements)
RWD to assess Selected outcomes RCT using electronic case Single-arm study
enrollment criteria identified using port forms or EHR or claims with external
& trial feasibility EHR/claims data, etc. data (or combination) control arm
RWD to support Mobile technology
site selection used to capture

supportive endpoints

L Increasing reliance on RWD

Observational
studies

Observational cohort
study

Case-control study

Courtesy of "FDA Real-World Evidence Program" Webinar by John Concato on 4 August 2021
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Statistical challenges with RWD

Randomized/interventional

Traditional randomized trial,

4/

Ne ized/

Non-r

inter

[rials in clinical practice settings
with pragmatic elements)

using elements of RWD
RWD to assess Selected outcomes
enrollment i identified using

ria
& trial feasibility EHR/claims data, etc.

using electronic case Single-arm study
forms or EHR or claims with external
ta (or combination) control arm

RWD to support Mobile technology
site selection used to capture

supportive endpoints
RWD Challenges

0 Selection bias

Q Intercurrent events

Q Informative missingness

QO Treatment by indication

Q High dimensional covariates

0O Outcome measurement error

0 Statistical model misspecification

0 Differences between external
controls and single trial arm RCT

Targeted Learning
path supports regulatory
decision making

Observational
studies

Observational cohort
study

Case-control study




The roadmap for learning from data
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What is the experiment that generated the data?
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What is the experiment that generated the data?

Three multi-national RCTs assessing
impact of corticosteroids on mortality
among septic shock patients

Pooled sample of n = 1,300 adults in septic shock

pre-treatment covariates
(e.g. biomarkers)

/ \

Y

A
steroid treatment (A=1) — > [ Ee— mortality

or no steriods (A=0)
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What is known about stochastic relations of the

observed variables?
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True data-generating
process (DGP)
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What happens when the statistical model is
misspecified and does not contain the DGP?
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Increasing Sample Size —™>




Step 3a: What is the target causal estimand that
we aim to identify from the data?
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Step 3b: What is the target statistical estimand
that we will learn from the data?
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How should we estimate the target estimand?
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Targeted Maximum Likelihood Estimation (TMLE)
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TMLE Step 1: Super learner

Targeted
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evidence
Mark van der Cross-validated
Leem performance of
learners + ensembles
Linear model 3 B r
BART 2
Random Forest =
Neural *
TMLE and Network Lasso Lsaming = Training
HAL Set Set
HAL E
Regression splines 7
8
9
j’validation
L2 Set

Fold 1

Hugely advantageous when coupled with NLP-derived covariates with EHR
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Highly Adaptive Lasso (HAL)

¢ Any d-dimensional cadlag function (i.e. right-continuous)
can be represented as a possibly infinite linear combination
of spline basis functions.

® The variation norm / complexity of a function is the
Li-norm of the vector of coefficients.

Converges to true function at rate n=*/3(log n)9/?
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HAL performance for d=3
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TMLE Step 2: Targeting follows a path of maximal
change in target estimand per unit likelihood
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Due to targeting (step @), the TMLE behaves as
the sample mean of efficient influence function

Previous Meta
32 RCT

Previous Meta | |
3 RCT | ‘

TMLE Meta
3RCT

0.8 0.9 1.0 1.1
Relative Risk for Mortality
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Can we break HAL-TMLE?

95% Confidence Interval Coverage
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Possibility to refine question of interest and inform
future studies
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Arriving at the substantive conclusion
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* Sensitivity analysis can be extended to incorporate statistical bias
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TL-based non-parametric sensitivity analysis RCT
with 25% LTFU example

Estimate
-4
L

No

Targeted Estimate

Estimates and 95% confidence intervals under assumed levels of causal bias

Effect

I,
11

Difference after adjusting
for bias due to measured
confounders = 0.68

i)
T

Estimate and 95% ClI
from main analysis

r

-5x -4.5x -4x

T T T T T T T T T T T T T T T T T T T 1
-35x -3x -25x -2x -15x -1x -05x Ox 05x 1x 15x 2x 25x 3x 35x 4x 45x 5x

Assumed causal bias relative to difference b dj d and d estimates

Courtesy of "Targeted-Learning Based Statistical Analysis Plan" Webinar by Susan Gruber on 28 April 2021

-6.10, unadjusted
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Traditional randomized trial, ials in clinical practice settings Observational
using elements of RWD th pragmatic elements) studies
RWD to assess Selected outcomes T using electronic case Single-arm study Observational cohort
enrollment ria identified using p with external study
& trial feasibility EHR/claims data, etc. ta (or combination) control arm
RWD to support Mobile technology Case-control study
site selection used to capture

supportive endpoints

RWD Challenges - L f
0 Selection bias argeled Lealliy
QO Intercurrent events path supports regulatory

Q Informative missingness decision making

QO Treatment by indication

Q High dimensional covariates

0O Outcome measurement error

Q Statistical model misspecification

0 Differences between external
controls and single trial arm RCT

Targeted Learning

v Roadmap for causal and statistical
inference

v Realistic statistical model

v Statistical estimand approximates
answer to causal question

v Flexible estimation and dimension
reduction with Super Learner

v Model-free sensitivity analysis

v Generate RWE with confidence
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Concluding Remarks

® Roadmap for causal inference and Targeted Learning
provides systematic principled approach for generating
RWE.

® |ntegrates all advances in machine learning, statistical
theory and causal identification.

® SL and TMLE can be tailored towards particular
estimation problem in pre-specified manner using outcome
blind simulations.



It’s Time for a Poll!

3. What is the key feature of doubly robust methods
based on machine learning?

a) Only one model fits (among treatment/censoring mechanism,
and outcome regression) needs to be correct

b) Super learning ends up with better algorithm for fitting these
regressions than any one algorithm

c) Doubly-robust ML-based methods have a higher likelihood of
getting a correct effect estimate

d) All of the above
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