Predictors of Annual Eyewear Expenditures in the United States

Zhengxuan Li, MD, Jieni Li, PhD, MPH, and Sujit S. Sansgiry, PhD

Department of Pharmaceutical Health Outcomes and Policy Houston, College of Pharmacy, University of Houston, Houston, TX, USA

Contact Information: Name: Zhengxuan Li University of Houston Phone: 346-628-4123

Email: zli71@uh.edu

\$64.26-

\$68.95

BACKGROUND

- Eyewear, encompassing both eyeglasses This study examined the and contact lenses, is indispensable for eyewear expenditures enhancing visual acuity.
- Good vision is vital not only for routine daily activities like reading, driving, and using digital devices but also plays a education, significant role employment, and social interactions.
- Vision care, however, can be a significant financial burden for many individuals and families. The costs of corrective eyewear and professional vision services can be substantial, particularly for those without adequate insurance coverage.
- This financial burden can lead to delays in obtaining necessary vision correction, which in turn may worsen vision problems or lead to other health complications.
- Identifying and addressing these factors makes it possible to devise strategies to reduce the economic impact of vision care.

OBJECTIVE

(EE), correcting vision impairments and proportion of the US population incurring these expenses and identified patient factors influencing EE.

METHODS

Study design and data source

- This study employs a retrospective cohort design using the Medical Expenditure Panel Survey (MEPS) from 2017-2021.
- The survey collects detailed information on healthcare utilization, cost, and insurance coverage, making it an ideal source for examining the patterns and predictors of EE.

Study population

From MEPS, we extracted data on individuals who reported EE during the study period. Sociodemographic variables included sex, race/ethnicity, age, education level, income level, and insurance coverage.

Statistical Methods

- Analysis: We Descriptive employed weighted descriptive statistics to compare the characteristics of individuals with and without EE.
- Logistic Regression: This method was used to identify predictors of EE.
 - The model included demographic and socioeconomic variables to explore their association with the likelihood of incurring EE.
- Analysis was conducted using SAS 9.4 with PROC SURVEY statement.

RESULTS

Table 1: Demographics of Individuals with EE	Table 2. Distribution of FF
Table 1. Delliographics of individuals with LL	I Table 2. Distribution of EE

Demog	graphic Feature	Percentage (%)
Age	< 18	5.22
	18-44	17.97
	45-64	31.04
	> 65	45.77
Gender	Female	41.79
	Males	58.21
Ethnicity	Non-Hispanic	66.46
	Whites	
	Non-Hispanic	14.91
	Blacks	
	Hispanic	2.59
	Others	16.04
Education	Less than high	11.03
	school	
	High school	42.93
	Beyond High	46.04
	School	
Income	Mid/High income	49.78
Status	Low income	20.16
	Poor/Near Poor	30.06
Insurance	Private	74.84
	Public only	22.28
	Uninsured	2.88

	Value	95% CI
Individuals with	59.60	57.30-61.90
EE	million	million
Annual EE	\$21.56	\$20.80-22.19
	billion	billion

\$66.61

Table 3: Findings from Multivariable Logistic Regression Model

Variable*	aOR	95% CI
Non-Hispanic White	1.16	1.09-1.23
Female	1.40	1.35-1.45
Older Age (65+ years)	1.47	1.34-1.60
Higher Education	1.99	1.80-2.19
Lower Poverty	1.25	1.17-1.33
Private Insurance	2.06	1.84-2.29
*D value < O OE		

*P-value < 0.05

Average EE (Per

Person Per year)

CONCLUSIONS

- The US population bears a substantial yearly financial burden associated with EE.
- Predictors of occurring EE include being elderly, non-Hispanic White, female, having higher education, lower poverty, and having private insurance coverage.

Reference:

1. Varadaraj V, Frick KD, Saaddine JB et al. Trends in eye consequences affordability: The US National Health Interview Survey, 2008-2016. JAMA Ophthalmology. 2019; 137(4): 391-98. 2. Elam AR, Tseng VL and Coleman AL. Disparities in vision health and eye care: Where do we go from here. Ophthalmology. 2022; 129(10): 1077-78.