

UNDERSTANDING CAUSES AND CONSEQUENCES IN THE OPERATING ROOM ASSOCIATED WITH DISTRACTIONS, INTERRUPTIONS, AND DISRUPTIONS: A FOCUSED LITERATURE REVIEW

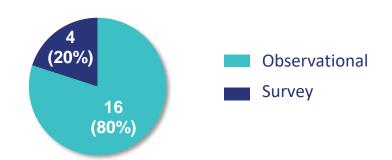
Manisha Lin¹, Carine Hsiao¹, Li-Chen Pan¹ ¹Alcon Vision, LLC, Fort Worth, TX, USA

Purpose

Building on a previous systemic literature review, we observed the influence of disruptions on performance, such as prolonged operating room (OR) times and patient safety²¹. However, the underlying reasons for disruptions during surgery have not been fully identified, and the possible economic consequences have yet to be examined. This literature review aims to enhance the prior systematic literature review by providing an updated overview of studies published since the last review. Our aim is to assess the key causes associated with intraoperative disruption and their impact on device performance, patient safety, and practice-related outcomes.

Methods

A targeted search was performed and screened using the following strategy and criteria:

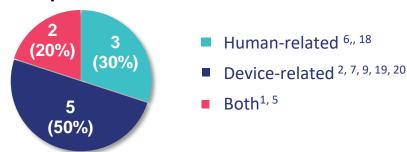

Database	PubMed
Date range	January 1, 2020 - November 8, 2023
Search terms	"disruption", "distraction" or interruption" and "surgical", "operation" or "Intraoperation"
Inclusion criteria	No restrictions on study designEnglish language
Outcomes of interest	Cause of intraoperative disruptionsImpact of intraoperative disruptionsEconomic consequences

Results

A total of 20 studies were reviewed, encompassing a mix of survey and observational studies (Figure 1). The studies assessed a wide variety of surgical fields, including laparoscopic, orthopedic, urology, emergency, and digestive surgery

Results

Figure 1. Overview of Study Designs



Study Objectives:

- 9/20 aimed to understand the causes behind intraoperative disruptions
- 9/20 aimed to explore the impact of intraoperative disruptions
- 2/20 aimed to evaluate preventive measures
- 0/20 assessed the financial implications

Causes of Intraoperative Disruptions

Figure 2. Type of Intraoperative Causes Identified in the Studies

Table 1. Key Causes Associated with Intraoperative Disruptions

 Irrelevant conversations^{1, 5, 6} Case-relevant communications^{6,18} Smartphone usage^{6,18} Device failure, such as vide device malfunction or disconnection^{7,9}
 Door movement⁶ Teaching¹⁸ Coordination issues⁵ Music¹⁸ Consultation¹⁸ Machine alarms² Improper assembly⁷ User unfamiliarity with the Physical breakage of the description

Potential Interventions

Out of the 20 studies reviewed, 2 specifically aimed at the reduction of intraoperative disruptions by:

- Implementing preventive measures like team briefings and warning signs to help prevent unnecessary door openings¹⁶
- Highlighting the significance of reporting disruptive behaviors and the need for management to respond promptly and decisively to such issues¹²

Results

Consequences of Intraoperative disruptions

Patient Safety

While the study did not assess the correlation between distractions and Intraoperative adverse events (IAEs), out of the 80 cases studied, 138 clinically significant IAEs were observed, with distractions occurring in all observed cases. 17

Heightened staff mental workload

- Equipment- and patient-related disruptions were associated with increased staff workload¹⁴
- Surgical flow disruption appears to impact on surgeons' mental, emotional and physiological resources¹⁰

Increased stress among care providers

Higher stress level among surgeons was associated with distractions related to equipment failures and people entering or exiting the OR (r = 0.206, P < 0.01 and r = 0.137, P < 0.01, respectively)⁸

Longer procedure duration

Distractions in the operating room could result in longer procedure durations²¹, which, in turn, could increase the likelihood of surgeons feeling distracted¹⁵

Conclusions

Findings from this study expand on existing knowledge by highlighting newly published literature assessing the key causes associated with intraoperative disruptions and their impact on patient outcomes and practice dynamics. Further studies are needed to quantify the financial implications of operating room disruption.

References

- nelsiek M, et al. (2022). World J Surg, 46(6). doi:10.1007/s00268-022-06526
- Ayas S, et al. (2021). Surg Endosc, 35(8). doi:10.1007/s00266-022-06326-9
 Bubric KA, et al. (2021). Jt Comm J Qual Patient Saf, 47(9). doi:10.1016/j.jcjq.2021.05.004
 Roberts ER, et al. (2021). ANZ J Surg, 91(5). doi:10.1111/ans.16799
 Cohen TN, et al. (2021). AORN J, 113(4). doi:10.1002/aorn.13344
 van Harten A, et al. (2021). Anaesthesia, 76(3). doi:10.1111/anae.15217
 Sharma S, et al. (2021). Surg Endosc, 35(8). doi:10.1007/s00464-020-07962-1

- Aouicha W, et al. (2021). J Surg Res, 259. doi:10.1007/s00464-020-07962-1 Aouicha W, et al. (2021). J Surg Res, 259. doi:10.1016/j.jss.2020.09.006 Etheridge JC, et al. (2022). Jt Comm J Qual Patient Saf, 48(10). doi:10.1016/j.jcjq.2022.06.006 van Houwelingen BCG, et al. (2022). Surg Endosc, 34(10). doi:10.1007/s00464-019-07239-2 Frasier LL, et al. (2020). J Surg Res, 256. doi:10.1016/j.jss.2020.06.007 Fast I, et al. (2020). Can J Anaesth, 67(2). doi:10.1007/s12630-019-01540-3

- Fast I, et al. (2020). Can J Anaesth, 67(2). doi:10.1007/s12630-019-01540-3 Koch A, et al. (2022). Surg Endosc, 36(6). doi:10.1007/s00464-021-08797-0 Koch A, et al. (2023). Surg Endosc, 37(9). doi:10.1007/s00464-023-10162-2 Jung JJ, et al. (2020). Surg Endosc, 34(7). doi:10.1007/s00464-019-07088-z Aydin MA, et al. (2022). J Perioper Pract, 32(11). doi:10.1177/17504589211024428 Rai A, et al. (2021). World J Surg, 45(11). doi:10.1007/s00268-021-06251-9 Nasri BN, et al. (2023). Surg Endosc, 37(3). doi:10.1007/s00464-022-09553-8
- Olin K, et al. (2022). BMJ Open, 12(1). doi:10.1136/bmjopen-2021-052283 Silver D, et al. (2020). Curr Pain Headache Rep, 24(10):60. doi:10.1007/s11916-020-00896-2
- Mcmullan et al. (2021), International Journal for Quality in Health Care, https://doi.org/10.1093/intqhc/mzab068