Real-World Data Integration for Causal Inference: Benefits, Costs, and Case Studies

ISPOR Annual Meeting 2024 Atlanta, GA May 6, 2024

Michael Grabner, PhD Principal Scientist Carelon Research **Edward Yu, ScD** Director Bristol Myers Squibb **Ruth Dixon, PhD** Sr Researcher Carelon Research

Patricia Lloyd, PhD, ScM

Health Statistician U.S. Food and Drug Administration

SS carelon

ر^{اله} Bristol Myers Squibb ّ

Scarelon.

Disclosures

Michael Grabner is an employee of Carelon Research and stockholder of Elevance Health.

Edward Yu is an employee and stockholder of Bristol-Myers Squibb.

Ruth Dixon is an employee of Carelon Research.

Patricia Lloyd is an employee of the U.S. Food and Drug Administration.

Carelon Research, a wholly owned subsidiary of Elevance Health, received funding from Bristol-Myers Squibb for research on which parts of this workshop are based.

The views expressed here are those of the authors and not necessarily those of Carelon Research, Bristol-Myers Squibb, or the U.S. Food and Drug Administration.

This workshop is a team effort

Michael Grabner Carelon Research

Edward Yu BMS

Ruth Dixon Carelon Research

Patsy Lloyd U.S. Food and Drug Administration

Nathan Hill BMS

Dawn Flick BMS

Stephan Lanes Carelon Research

Katherine Harris Carelon Research

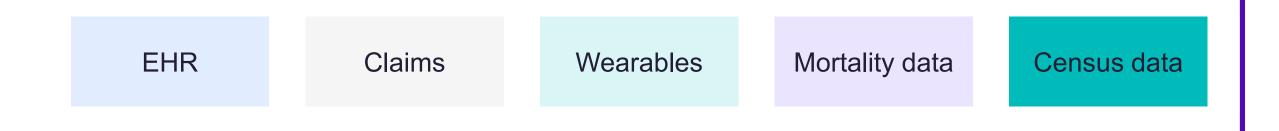
- 1. Basics of integrated data, causal inference, and their interplay (~15 min, Mike)
- 2. Case Study 1: External Control Arm (ECA) in multiple myeloma (~10 min, Ed)
- 3. Case Study 2: Directed Acyclic Graphs (DAGs) in colorectal cancer (~10 min, Ruth)
- 4. Case Study 3: COVID-19 vaccine safety in the *BEST* Initiative; Conclusions (~15 min, Patsy)

Audience polls will be conducted throughout; Q&A at the end.

Learning objectives

Participants will be able to...

- 1. List and describe the benefits and challenges of integrating RWD
- 2. Understand the relationships between integrated data and observational study biases
- 3. Reference and discuss multiple case studies
- 4. Critique studies using integrated data for causal inference



What are Real World Data & Real-World Evidence?

Data on the effects of health interventions that are routinely collected, outside the scope of conventional randomized controlled trials

Insights derived from the analysis of RWD

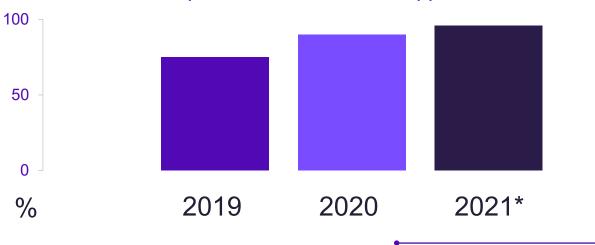
https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence

RWD & RWE have many advantages...

Less time and cost compared with a clinical trial

Ø,	

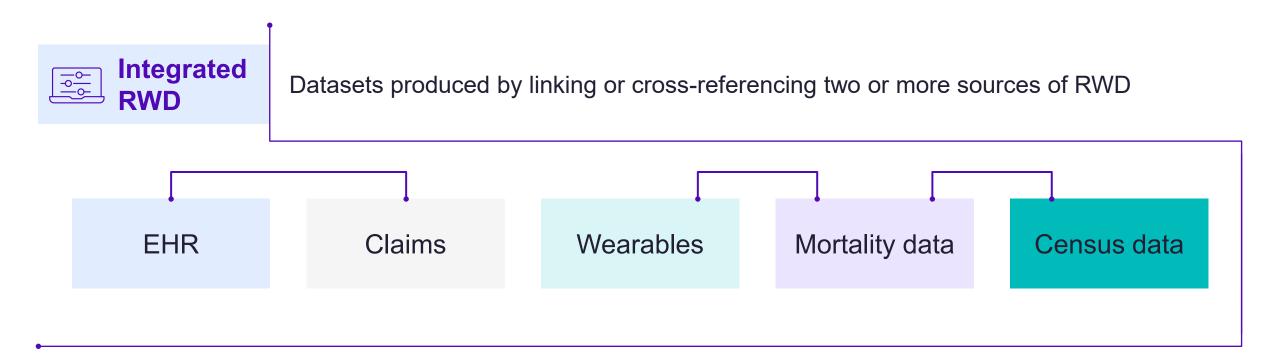
May be able to perform research that wouldn't be possible in a clinical trial


Detection of less frequent sideeffects

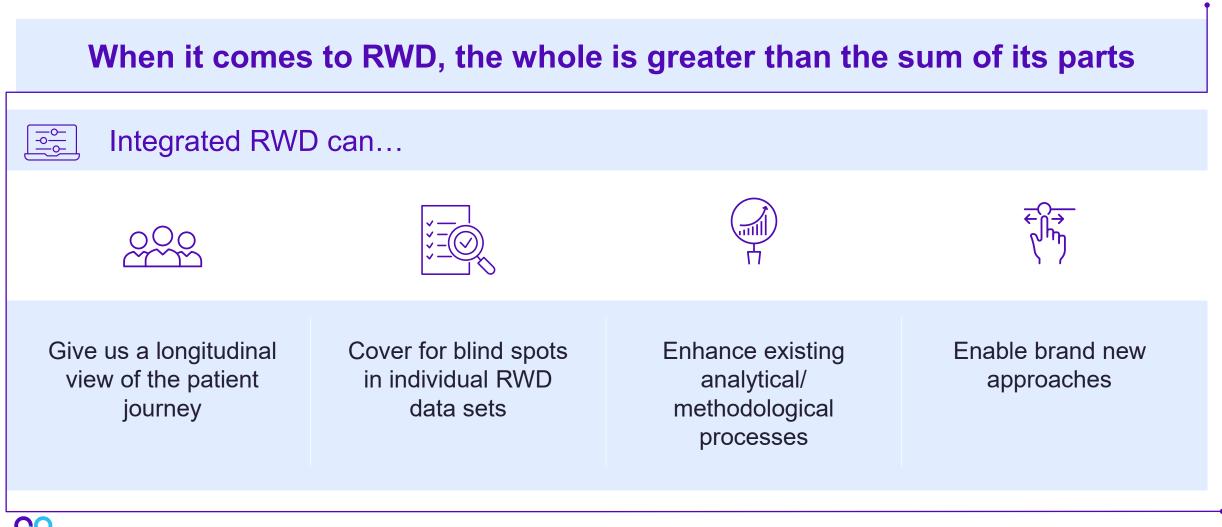
Possibility of understanding therapeutic journeys in very large patient groups

And regulating agencies recognize the value

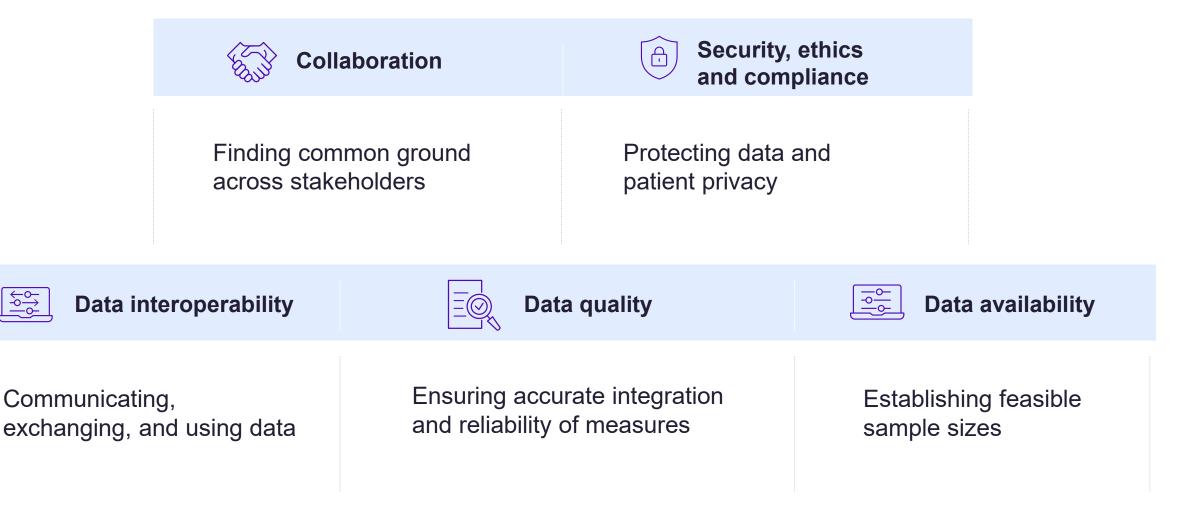
From 2019 – 2021*, 116 out of 136 new molecular entity (NME) approvals from the FDA featured RWE – and the use of RWE increased over time¹



RWE presence in FDA NME approvals


83

*Data included first half of 2021 Purpura, C.A., Garry, E.M., Honig, N., Case, A., & Rassen, J.A. (2022). The role of real-world evidence in FDA-approved new drug and biologics license applications. *Clinical Pharmacology & Therapeutics*, 111(1), 135-144.


What is integrated RWD?

Why is integrated RWD especially useful?

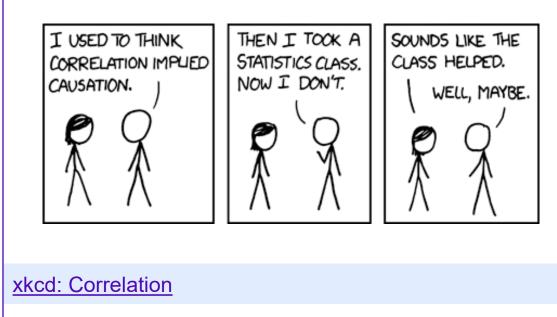
RWD integration does come with challenges

What is causal research?

Association

Intervention

Counterfactual


Modern causal research in healthcare aims to **quantify** causal effects of an intervention in order to improve decision-making

Human behavior seeks to optimize outcomes, and observed relationships rarely reflect causal relationships

Most research intends to uncover causal effects and our language should reflect that (Hernan 2018)

PEARL, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press, New York. 2nd edition, 2009 | Hernán MA. The C-Word: Scientific Euphemisms Do Not Improve Causal Inference From Observational Data. Am J Public Health. 2018 May;108(5):616-619

Common biases in observational study designs

Confounding	Variables that affect both exposure and outcome induce spurious correlation
A Measurement	Observed values deviate from underlying true value
Selection	Study sample selection is related to both exposure and outcome
Time-related	Follow-up time and exposure status are inadequately taken into account

Using integrated RWD sources can increase confidence in the estimated causal relationships

Confounding	More covariates allow for better adjustment of our causal estimate for confounding
A Measurement	Information from multiple sources can help estimate and reduce missingness and misclassification of exposures, outcomes, and covariates
Selection	Trade-off: Effect robustness can be assessed across multiple databases Higher potential for introducing selection bias (e.g., subgroup with labs)
Time-related	Neutral (design-driven)

Disclosures

• Edward Yu is an employee and stockholder of Bristol-Myers Squibb.

RWE is a major regulatory priority for health authorities globally, with interest accelerated following COVID-19

PMDA

🚔 FDA

2016: 21 st Century Cures Act
2018: FDA RWE Framework
2019: Draft Guidance on Submissions
Containing RWE
2021:

- Draft Guidance on EHR/Claims Data
- Draft Guidance on Registry Data
- Draft Guidance on RWD Standards
- Draft Guidance on Considerations for RWD/E

2022:

- Final Guidance on Submitting RWE
- Advancing RWE Pilot Program

2023:

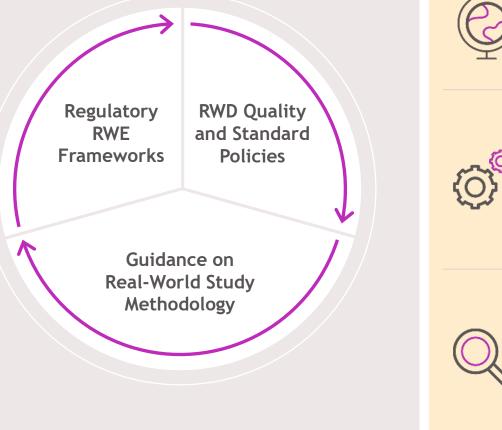
- Advancing RWE Pilot Program
- Draft Guidance on RW External Controls
- Draft Guidance on RCTs leveraging RWD Elements
- Draft Guidance on Non-Interventional Studies
- Draft Guidance on using RWE to support regulatory decision-making for medical devices

EMA

2017: EMA/HMA Big Data TF Initiated	2019: Registry Consultation Pathway	Taiwan
 2018: EMA Regulatory Science to 2025 Initiated 2020: EC Pharmaceutical Strategy for Europe Adopted 2021: Multiple Big Data Workshops 2021: Registry-Based Studies Final Guideline 2022: DARWIN EU Launched Draft Data Quality Framework Draft Good Practices Guide for the Use of the Metadata Catalogue for RWD Sources 2023: RWE framework for decision-making 	 2020: Database Consultation Pathway 2021: PMDA Final Guidance on Basic Principles on the Use of Registries 2021: PMDA Final Guidance on Reliability Assurance of Registry Data 2021: PMDA/Trade Association RWE Working Group Established 2022: Guidance for using registry and medical databases for drug approvals 2023: Guidance for using registry and medical databases for regenerative medical product approvals 	 2020: Final TFDA Guidance on Basic Consideration for RWE 2021: Final TFDA Guidance on Relevance and Reliability of RWD; Final Guidance on Submitting RWE 2019: HC Notice Optimizing RWE 2022: Joint CADTH/HC Draft Guidance on Reporting RWE 2021: Joint CADTH/HC Draft Guidance on Reporting RWE 2021: TGA Holding Paper on RWE Brazil 2021: AVNISA RWE Workshops Switzerland 2022: Swiss medic RWE Position Paper
MHRA	NMPA	International
2021: MHRA Final Guideline on RWD to Support Regulatory Decisions 2021: MHRA Final Guideline on RCTs Generating RWE	 2020: Final Guideline on Using RWE in Drug Evaluation; Final Guideline Pediatric RWE 2021: Final Guideline on Data Considerations with RWD 2022: Draft Guideline on RWE Protocol 	ICH - 2022: Plan for Guidance on Safety Pharmaco-epi RWE ICRMA - 2022: ICRMA Joint Statement on International Collaboration to Enable RWE for Regulatory Decision-Making

2022: Draft Guideline on RWE Protocol

Development; Draft Guideline on CDE RWE


Meetings)

 \bigcirc

Rest of World

Overview of results by guidance category

Most major health authorities have released frameworks on RWE US FDA, EMA, Health Canada, Japan PMDA, China NMPA, and Taiwan FDA

Data quality guidance and fit for use standards is often an important next step NMPA and PMDA released dedicated guidance on data quality in 2021. Additional HAs released guidance spanning multiple topics including data quality. Multiple FDA guidance documents in 2022.

Methods guidance

Countries are now releasing methods guidance largely focused on RCTs incorporating RWE or guidance discussing multiple topics including general study methods (FDA, EMA, China, Japan, and Taiwan)

FDA Guidance on Externally Controlled Trials

What is in-scope?

Addressing potential bias

- Considerations for the design and analysis of externally controlled trials to study the effectiveness and safety of drugs
- Risks to the validity of trial results from potential bias
- Focuses on the use of patient-level data from other clinical trials or from Real-world Data (RWD) sources, e.g., registries, EHR, claims
- Considerations related to communicating with FDA and ensuring access by FDA to data from an externally controlled trial

- Unmeasured confounding, lack of blinding, and other sources of bias cannot be eliminated in externally controlled trials
- Critically important in the conduct of such trials to:
 - Assess the extent of confounding and bias
 - Use of analytic methods to reduce the impact of such bias

External Control in RRMM as part of EMA filing (Aug-2021 EMA Approval)¹

KarMMa (MM-001) was a single arm trial investigating Abecma in Relapsed Refractory Multiple Myeloma (RRMM):

 Received ≥3 prior MM treatment regimens

- Received ≥2 consecutive cycles of each regimen
- Received an
 immunomodulatory
- agent, PI and anti-CD38 mAB

•

 Refractory to last treatment regimen bb2121 manufacturing Leukapheresis • Flu (30 mg/m²) • Cy (300 mg/m²) • Dose (CAR+ x 10⁶ cells) • Dose Range: 150 - 450 *Re-treatment allowed at PD if best response \ge SD • Days -5, -4, -3 0

- **Primary endpoint:** ORR
- Secondary endpoints: CT, TTR, DoR, PFS, TTP, OS, MRD, HRQoL

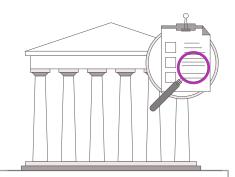
- PRIME EMA meeting (2018)
- Main limitation of KarMMa is the single arm design, with lack of control/comparator arm
- Due to number of products approved, EMA recommended to consider an External Control Group to demonstrate significant benefit
 - The Agency acknowledged plan for Systemic Literature Review (SLR), but noted that without an external control arm with patientlevel data, the approach may result in difficulties quantifying the magnitude of benefit

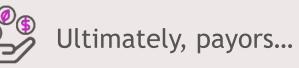
1. EPAR Assessment Report. EMEA/H/C/004662/0000. CHMP. EMA. 2021. Available at: https://www.ema.europa.eu/en/documents/assessment-report/abecma-epar-public-assessment-report_en.pdf

EMA Feedback on submitted RWE (EPAR) (Aug-2021 EMA Approval)¹

Results of External Comparison

- The comparison showed "*clinically relevant and statistically significant benefit* for ide-cel across all pre-defined efficacy endpoints"
- The efficacy results compared "favourably to those in the matched RW historical cohort as well as those reported in the literature"


• Limitations


- "Despite extensive efforts to match the patient population, the comparison was limited by several factors including:
 - "long time period (up to 60 days from the index date) allowed for collection of baseline data"
 - "overlapping recruitment periods of the RWS and the MM-001 at the same study centers"
 - "large proportion of missing data (up to 30%) for some included co-variates and several co-variates excluded from the PS model due to >30% missing data"
- Conclusions
 - "Despite the limitations of the indirect treatment comparisons, the results indicate that ide-cel treatment is associated with responses that are well above those reported with current standard of care"

ABECMA granted Conditional Approval as the first cell therapy authorized for the treatment of RR MM in the EU

1. EPAR Assessment Report. EMEA/H/C/004662/0000. CHMP. EMA. 2021. Available at: https://www.ema.europa.eu/en/documents/assessment-report/abecma-epar-public-assessment-report_en.pdf

Regulators are leading in RWE guidance - and payors are starting to follow suit

Care about high quality evidence

Recognize the value of measuring outcomes in the covered population

NICE real-world evidence framework

"Real-world data can be used to **contextualise randomised trials**, to **estimate effects of interventions** in the absence of trials, or **to complement trials** to answer a broader range of questions about the impacts of interventions in routine settings."¹

1. NICE real-world evidence framework, June 2022. Available at: https://www.nice.org.uk/corporate/ecd9/resources/nice-realworld-evidence-framework-pdf-1124020816837

Carelon Research | 23

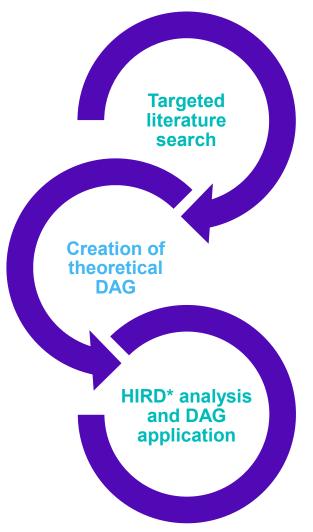
(^{III} Bristol Myers Squibb[™]

Case study 2 – Directed Acyclic Graphs (DAGs) in colorectal cancer

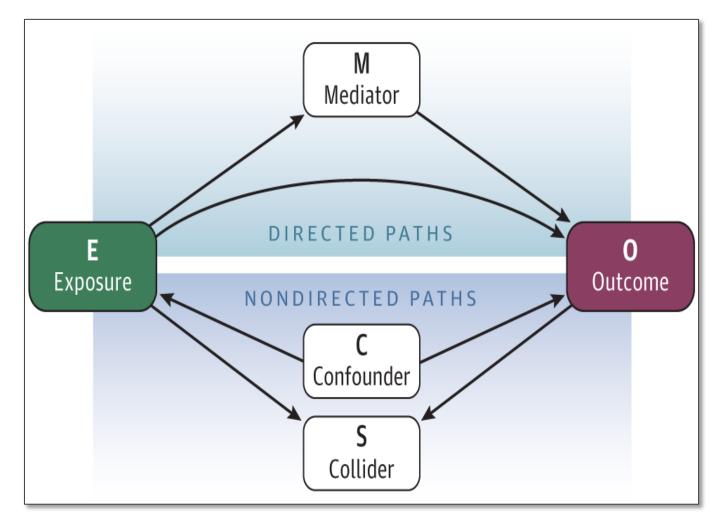
Ruth Dixon, PhD Senior Researcher Carelon Research

Disclosures & acknowledgments

Ruth Dixon is an employee of Carelon Research.


Carelon Research received funding from Bristol-Myers Squibb (BMS) for the conduct of this study.

Overview


Study objective: to systematically build a directed acyclic graph (DAG) to depict causal pathways between first-line (1L) treatment and survival among patients with metastatic colorectal cancer (mCRC)

Study design: Two targeted literature searches; plausibility assessments to create a theoretical DAG; analysis of integrated data to distinguish measured from unmeasured confounders, estimate bivariate relationships, and calculate DAG-implied unconditional independencies.

What are DAGs?

- DAGs are graphical models used to encode assumptions about the datagenerating process
- DAGs depict relationships between variables and are used to study causal relationships between exposures and outcomes
- The nodes/vertices correspond to variables of potential interest in a study
- Edges/arrows depict hypothesized direct causal effects

Variables (i.e., nodes)

Age

ECOG* performance status

Prior chemotherapy

Location of primary tumor

Surgery of primary tumor

Number of metastatic sites

Liver-only metastasis

Intrahepatic tumor burden

Surgical/resection of metastases

Synchronous versus metachronous metastases

KRAS and BRAF mutation status

Microsatellite instability/mismatch repair status (MSI/MMR status)

Number of prior treatment lines (N/A)

Biological sex

Race/ethnicity

Prior radiotherapy

Stage at first diagnosis

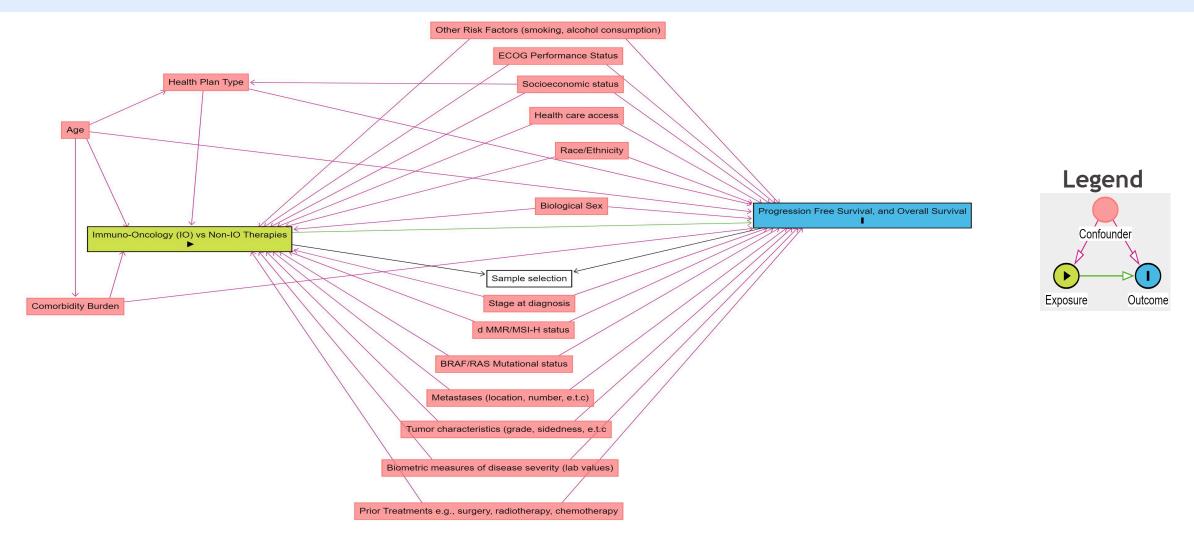
Tumor differentiation

Initially resectable metastatic disease

Lung-only metastases

Metastasis to peritoneum

Comorbidities


Biometric measures of disease severity (laboratory values)

- Lactate dehydrogenase (LDH)
- Alkaline phosphatase (ALP) albumin
- platelet count
- Carcinoembryonic antigen (CEA)

Two targeted literature searches identified 94 RCTs and 22 RWD studies, from which 28 variables were extracted.
*The ECOG Performance Status Scale describes a patient's level of functioning in terms of their ability to care for themself, daily activity, and physical ability; Goey KKH, et al. Eur J
Cancer. 2018;100:35-45

The theoretical DAG

All 28 variables considered as potential confounders (e.g., race/ethnicity) or colliders (e.g., sample selection) relative to the treatment-outcome relationship were built into the DAG. The DAG was created using the free online tool DAGitty (https://www.dagitty.net/); Textor J, et al. Int J Epidemiol. 2016;45(6):1887-1894

Healthcare Integrated Research Database (HIRD®): integrated enrollment files, medical and pharmacy claims, clinical EHR and cancer care quality program data, SDoH, mortality, from a large US payer.

We applied our DAG to the HIRD in order to:

- Distinguish measured from unmeasured confounders (feasibility assessment)
- Calculate bivariate associations between exposure, outcome, and each confounder to assess the relative strength of the relationships: a weak relationship, combined with other supporting information, may allow researchers to remove/reverse arrows
- Calculate DAG-implied unconditional independencies between confounders: a strong relationship may indicate that arrows must be added

Patient characteristics

Demographics and clinical characteristics of metastatic colorectal cancer patients in the HIRD from 2014-01-01 to 2023-05-31

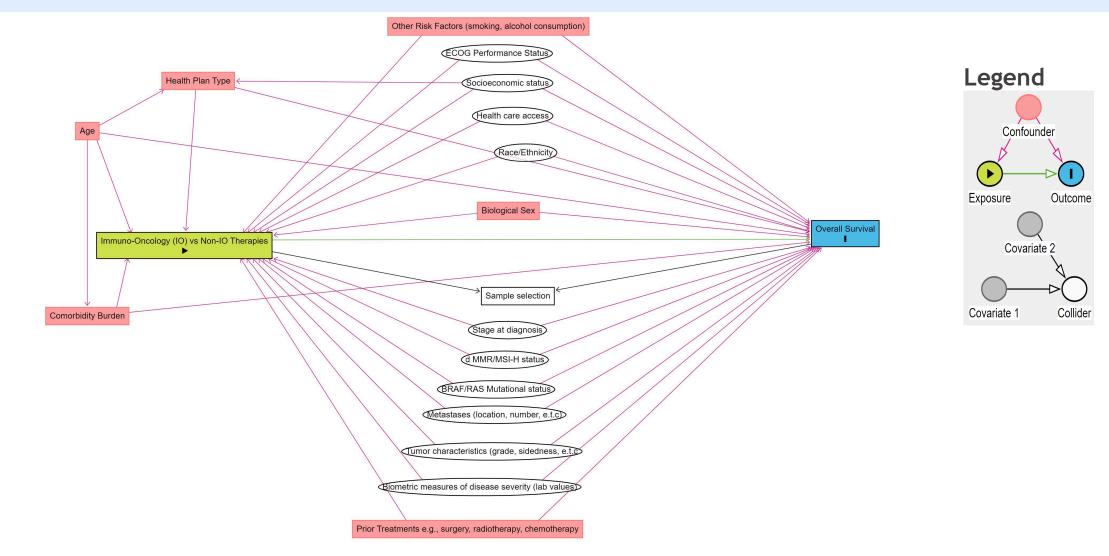
	All patients	Ю	Non-IO*
Sample size	9,046	213	8,866
Age (years), median (IQR)	57 (50-63)	60 (50-71)	57 (50-63)
Age ≥ 65 years, n (%)	1,795 (19.8%)	71 (33.3%)	1,730 (19.5%)
ECOG performance status grouping, n (%)			
0	2,890 (46.0%)	58 (32.6%)	2,842 (46.3%)
1	3,021 (48.1%)	104 (58.4%)	2,932 (47.8%)
2	330 (5.3%)	15 (8.4%)	317 (5.2%)
3	41 (0.65%)	<5	41 (0.67%)
4	<5	0	<5
Prior chemotherapy, n (%)	2,391 (26.4%)	55 (25.8%)	2,362 (26.6%)

ECOG, Eastern Cooperative Oncology Group; the ECOG Performance Status Scale describes a patient's level of functioning in terms of their ability to care for themself, daily activity, and physical ability. The scores are derived from the CCQP data and integrated in the HIRD. IO, immuno-oncology. *IO and non-IO populations are not mutually exclusive. There are 33 patients in the non-IO cohort that also had a claim for an IO therapy in the 30 days pre/post mCRC case start.

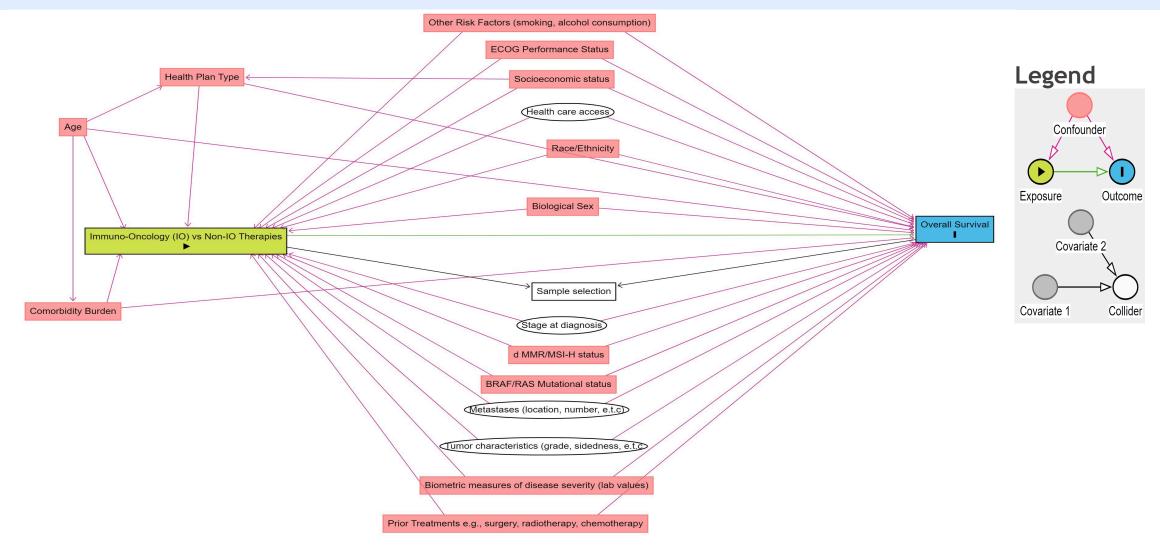
Bivariate associations

Potential confounders	Directed arrows	Sample size	Measure of association (odds ratio)	95% CI	p-value	Notes and interpretation
Age (≥65 years vs. <65 years)	Exposure (IO therapy vs non-IO therapies)	9046	2.35	1.74 – 3.16	<0.01	Strong evidence for relationship
	Overall Survival	9046	1.61	1.43 – 1.81	<0.01	Strong evidence for relationship
ECOG performance	Exposure (IO vs non-IO therapies)	6283	1.87	1.33 – 2.61	<0.01	30% Data Missing; Strong evidence for relationship
status (0 vs 1+)	Overall Survival	6283	1.67	1.47 – 1.9	<0.01	30% Data Missing; Strong evidence for relationship
Prior chemotherapy	Exposure (IO vs non-IO therapies)	9046	0.60	0.41 – 0.87	<0.05	Strong evidence for relationship
(Yes vs No)	Overall Survival	9046	1.63	1.47 – 1.82	<0.01	Strong evidence for relationship

ECOG, Eastern Cooperative Oncology Group; the ECOG Performance Status Scale describes a patient's level of functioning in terms of their ability to care for themself, daily activity, and physical ability. The scores are derived from the CCQP data and integrated in the HIRD. IO, immuno-oncology


DAG-implied independencies

Variable	DAG-implied independency	Sample size	Measure of association (odds ratio)	95% CI	p-value	Notes and interpretation
ECOG performance status (0 vs 1+)	ECOG ⊥ Age*	6283	1.84	1.62 - 2.09	<0.01	strong evidence for relationship; older members much more likely to have worse ECOG. Causal directionality can go both ways
Prior chemotherapy (<i>Yes vs No</i>)	Prior chemotherapy ⊥ Age	9046	0.94	0.83 – 1.05	0.27	Weak evidence for relationship


ECOG, Eastern Cooperative Oncology Group; the ECOG Performance Status Scale describes a patient's level of functioning in terms of their ability to care for themself, daily activity, and physical ability. The scores are derived from the CCQP data and integrated in the HIRD. *Defined as ≥65 years vs. <65 years

Claims-only DAG – Any single data source will lack important confounders

34

Integrated RWD DAG – Example of unmeasured variables

35

Conclusions

- Creating DAGs in a systematic and efficient manner, informed by existing literature and plausibility assessments, provides transparency when estimating causal effects from RWD and can reduce bias in the chosen statistical model.
- DAGs do not provide guidance on the appropriate functional form of the exposure-outcome relationship, how to deal with missing or misclassified data, how to quantify biases, or how to identify effect measure modifiers.
- To learn more about the mCRC case study, I invite you to the "Novel outcomes Research Data Methods" Podium session (P55) on Wednesday 08 May 2024, 8:45am – 9:45am.

References

- 1) Aparicio T, Lavau-Denes S, Phelip JM, et al. Randomized phase III trial in elderly patients comparing LV5FU2 with or without irinotecan for first-line treatment of metastatic colorectal cancer (FFCD 2001-02). *Ann Oncol.* 2016;27(1):121-127. doi:10.1093/annonc/mdv491
- Cremolini C, Antoniotti C, Lonardi S, et al. Primary tumor sidedness and benefit from FOLFOXIRI plus bevacizumab as initial therapy for metastatic colorectal cancer. Retrospective analysis of the TRIBE trial by GONO. *Ann Oncol*. 2018;29(7):1528-1534. doi:10.1093/annonc/mdy140
- 3) Datta SS, Ghosal N, Daruvala R, et al. How do clinicians rate patient's performance status using the ECOG performance scale? A mixedmethods exploration of variability in decision-making in oncology. *Ecancermedicalscience*. 2019;13:913. Published 2019 Mar 28. doi:10.3332/ecancer.2019.913
- 4) Ferguson KD, McCann M, Katikireddi SV, et al. Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): a novel and systematic method for building directed acyclic graphs [published correction appears in Int J Epidemiol. 2020 Feb 1;49(1):353]. Int J Epidemiol. 2020;49(1):322-329. doi:10.1093/ije/dyz150
- 5) Goey KKH, Sørbye H, Glimelius B, et al. Consensus statement on essential patient characteristics in systemic treatment trials for metastatic colorectal cancer: Supported by the ARCAD Group. Eur J Cancer. 2018;100:35-45. doi:10.1016/j.ejca.2018.05.010
- 6) Lipsky AM, Greenland S. Causal Directed Acyclic Graphs. JAMA. 2022;327(11):1083-1084. doi:10.1001/jama.2022.1816

Part 4

Real-World Data Integration for Causal Inference Case Study for COVID-19 Vaccine Safety Surveillance ISPOR May 6, 2024

Patricia C. Lloyd, PhD, ScM U.S. Food and Drug Administration (FDA) Center for Biologics Evaluation and Research (CBER)

Disclosure

- The views expressed here are those of the authors and not necessarily those of the U.S. Food and Drug Administration.
- The U.S. Food and Drug Administration funded this study.
- No personal or financial relationships relevant to this presentation existed during the past 12 months or during the conduct of the study.

CBER Surveillance Program

CBER-Regulated Products

Vaccines (preventative and therapeutic)

Blood (components and derived)

Human Tissues and Cellular Products

Gene Therapies

Xenotransplantation Products

FDA CBER Mission Focus

Ensure biologic-product safety and effectiveness

CBER Surveillance Program's Vision

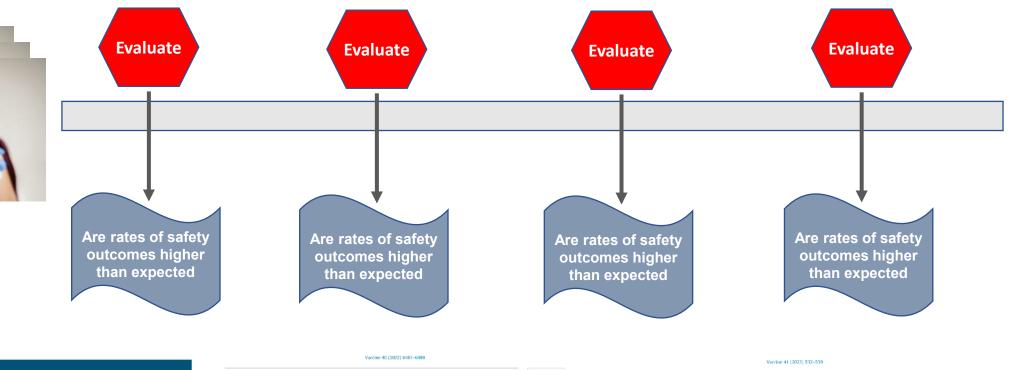
To create and utilize an effective national post-market surveillance system for CBERregulated products to provide data for evidence-based regulatory decisions

Federal Partner and BEST Initiative Data Sources

Data Source*	Database Type	Number of Patients Covered (Millions)	Time Period Covered
CMS - Medicare	Claims	105	2005 - present
Blue Health Intelligence	Claims	46	2012 - present
Optum - Adjudicated	Claims	66	1993 - present
Optum - Pre adjudicated	Claims	30	2017 – present
Carelon Research	Claims	69	2010 – present
CVS Health	Claims	37	2018 – present
Optum EHR	EHR	102	2007 - 2020
Optum Integrated Claims - EHR	Linked EHR Claims	25	2007 - 2020

*Data lag varies for different databases.

Signal Detection


Near Real-time Surveillance

Signal Evaluation

- Cross-check with other federal surveillance systems
- Additional Analysis
- Fully adjusted epidemiologic studies

Signal Detection

Research

JAMA Pediatrics | Original Investigation

Safety of the BNT162b2 COVID-19 Vaccine in Children Aged 5 to 17 Years

Mao Hu, BS; Hui Lee Weng, PhD, MS; Yuhui Feng, MS; Patricia C. Lloyd, PhD, ScM; Elizabeth R. Smith, BS; Kandace L. Amend, PhD; Annemarie Kline, MS; Daniel C. Beachler, PhD, MPH; Joann F. Gruber, PhD; Mahasweta Mitra, MPH; John D. Seeger, DiPH; PharmD; Charlalym Harris, MPH; PhD, Alex Seccra, PhD; Joyce Obid, PhD; Jing Wang, BA; Jennifer Song, MA, MURP; Cheryl N. McMahili-Walraven, PhD; Christian Reich, MD, PhD; Rowan McEvoy, BS; Rose Do, MD; Yoganand Chillarige, MPA; Robin Clifford, MS; BS; Danielle D. Cooper, MPH; Azadeh Shoaibl, PhD, MHS; Richard Forshee, PhD; Steven A. Anderson, PhD, MPP

+ Supplemental content

IMPORTANCE Active monitoring of health outcomes after COVID-19 vaccination offers early detection of rare outcomes that may not be identified in prelicensure trials.

OBJECTIVE To conduct near-real-time monitoring of health outcomes following BNT162b2 COVID-19 vaccination in the US pediatric population aged 5 to 17 years.

	Contents lists available at ScienceDirect	
5-2-23	Vaccine	-
ELSEVIER	journal homepage: www.elsevier.com/locate/vaccine	AV.

Near real-time surveillance of safety outcomes in US COVID-19 vaccine recipients aged 12 to 64 years

Patricia C. Lloyd^a, Mao Hu^b, Hui-Lee Wong^a, Azadeh Shoaibi^a, Cindy Ke Zhou^a, An-Chi Lo^b, Kandace Amend^c, Daniel C. Beachler^d, Cheryl N. McMahill-Walraven^e, Elizabeth R. Smith^b, John Seeger^c, Alex Secora¹, Djeneba Audrey Djibo⁶, Joyce Obidi^a, Yuhui Feng^b, Jennifer Song^c, Christian Reich¹, Charalynn Harris⁶, Sandia Akhtar^b, Robin Clifford^c, Nandini Selvam¹, Jennifer L. Pigoga⁶, Yixin Jiao^b, Yoganand Chillarige⁶, Thomas MaCurdy⁶, Richard Forshe^e, Steven A. Anderson^{4,6}

⁶ US Food and Drug Administration, Silver Spring, ND, USA ⁸Acumen LLC, Barlingarne, CA, USA ⁶Optume Epidemisioga, Bostou, MA, USA ⁶ Health Care, Inc, Wilmington, DF, USA ⁶ CIS Health Chinical Trial Services, Blae Boll, PA, USA ⁶ QIS Health Chinical Trial Services, Blae Boll, PA, USA ⁶ QIS Health Chinical Trial Services, Blae Boll, PA, USA ⁶ QIS Health Chinical Trial Services, Blae Boll, PA, USA ⁶ Display and Blae Services, Blae Boll, PA, USA ⁶ Display and PA, Chinical Trial Services, Blae Boll, PA, USA ⁶ Display and PA (2014).

出版的新闻本	Contents lists available at ScienceDirect	π.
	Vaccine	Vaccine
E. UL	vacenie	
ELSEVIER	journal homepage: www.elsevier.com/locate/vaccine	N. K. K.

Surveillance of COVID-19 vaccine safety among elderly persons aged 65 years and older

Hui-Lee Wong^a, Ellen Tworkoski^b, Cindy Ke Zhou^a, Mao Hu^b, Deborah Thompson^a, Bradley Lufkin^b, Rose Do^a, Laurie Feinberg^b, Yoganand Chillarige^b, Rositsa Dimova^a, Patricia C. Lloyd^a, Thomas MaCurdy^{b,C}, Richard A. Forshee^a, Jeffrey A. Kelman^a, Azadeh Shoaibi^a, Steven A. Anderson^{a,*}

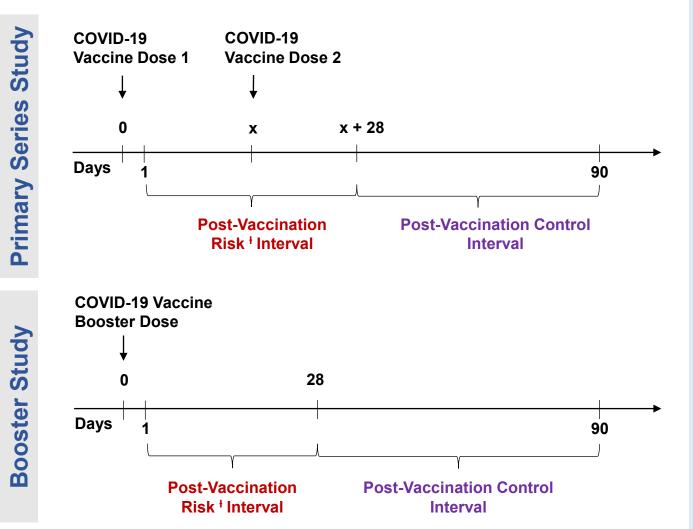
⁴US Food and Drug Administration, Silver Spring, MD, USA ⁸Acument LLC, Burtingume, CA, USA ⁹Department of Fenometers, Standard University, Stanfard, CA, USA ⁴Centers for Medicare & Medicald Services, Weshington, DC, USA

Limitations of Signal Detection Studies

- Results with an historical comparator may be sensitive to the time period
- Vaccinated individuals may differ from individuals from an historical comparator group
- Data on potential confounders may not be available in claims data

Signal Evaluation

Example: Potential Adverse Events Following COVID-19 Ancestral Monovalent mRNA Vaccination Among Adults Aged 65 Years and Older

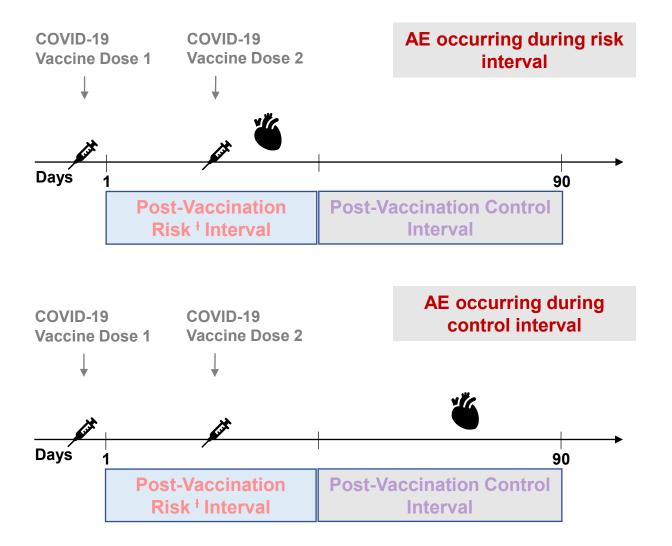

Analysis Specifications	Primary Series Study	Booster Study	
Study Period	December 11, 2020 – Spring 2021 August 12, 2021 – Spring 2022		
Data Sources	U.S. Center for Medicare and Medicaid Services (CMS) - Medicare Administrative Claims		
Study Design	Self-Controlled Case Series (SCCS)		
Study Population	U.S. CMS beneficiaries aged 65+ with ≥ one dose of the vaccine and an identified Adverse Event (AE)		
Exposures	BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna)		
Adverse Events (AE)	 Acute Myocardial Infarction (AMI) Pulmonary Embolism Immune Thrombocytopenia Disseminated Intravascular Coagulation 	 Acute Myocardial Infarction (AMI) Pulmonary Embolism Immune Thrombocytopenia Bell's Palsy Myocarditis/Pericarditis 	

Citation: Shoaibi A, Lloyd PC, Wong HL, Clarke TC, Chillarige Y, Do R, Hu M, Jiao Y, Kwist A, Lindaas A, Matuska K, McEvoy R, Ondari M, Parulekar S, Shi X, Wang J, Lu Y, Obidi J, Zhou CK, Kelman JA, Forshee RA, Anderson SA. Evaluation of potential adverse events following COVID-19 mRNA vaccination among adults aged 65 years and older: Two self-controlled studies in the U.S. Vaccine. 2023 Jul 19;41(32):4666-4678. doi: 10.1016/j.vaccine.2023.06.014. Epub 2023 Jun 14. PMID: 37344261; PMCID: PMC10266501.

Signal Evaluation

Example: Potential Adverse Events Following COVID-19 Ancestral Monovalent mRNA Vaccination Among Adults Aged 65 Years and Older

Population Inclusion Criteria


- Enrolled in Medicare FFS from *clean window* prior to AE occurrence
- At least 65 years of age at the time of COVID-19 vaccination
- Contributed follow-up times to risk and control intervals
- Did not have an AE diagnosis during AE-specific clean window

Population Exclusion Criteria

Primary series study

- Less than 17 days between first and second doses
- Received different brands of COVID-19 vaccines for first and second dose observation Booster study
- Received different brands of COVID-19 vaccines for the booster dose compared to the primary series vaccine

Self-Controlled Case Series (SCCS) Design

SCCS design

The risk of the AE following any dose is compared in the risk and control intervals using a conditional Poisson regression model.

Strengths

- Ability to control for time-invariant confounders
- Each case serves as their own control, eliminating the need to identify unvaccinated comparators

Limitations

- The assumptions may not be met in each exposure – outcome scenario
- Does not control for time-varying confounders

Signal Evaluation

Example: Potential Adverse Events Following COVID-19 Monovalent mRNA Vaccination Among Adults Aged 65 Years and Older

Analysis Specifications	Primary Series Study	Booster Study	
Statistical Analyses	 Incidence Rate Ratio (IRR) Absolute Risk: Attributable Risk Medical Chart Review: Positive Predictive Values (PPVs), Quantitative Bias Analyses 		
	Seasonality adjustmePPV-adjusted analysi		
Adjustments	 Seasonality and PPV-adjusted analysis Seasonality, PPV-adjusted, and prior COVID-19 exclusion analysis 	 Prior COVID-19 exclusion analysis Seasonality and prior COVID-19 exclusion analysis Removal of restriction for population with primary series vaccine analysis 	

Case Counts for Acute Myocardial Infarction

(n=3.36	Series Study M individuals; M doses)	Booster Study (n=6.12 M individuals; 6.12 M doses)	
BNT162b2	mRNA-1273	BNT162b2	mRNA-1273
2,783	870	8,101	7,941

Inferential Results: Acute Myocardial Infarction

	PPV	E	3NT162b2	mF	RNA-1273
Primary Series	80.00% (70.59-86.96%)	IRR (95 % CI)		IRR (95 % CI)	
Primary SCCS analysis		1.17 (1.08,1.28)	⊢ ⊷-1	1.06 (0.91,1.24)	⊢ ∔∎—4
Seasonality adjusted analysi	s	1.10 (1.01,1.20)	 1	1.002 (0.86,1.17)	⊢→ −1
PPV adjusted analysis		1.37 (1.23,1.52)	⊢ •-1	1.23 (1.02,1.49)	⊢ ⊷−1
Seasonality & PPV-adjusted	analysis	1.29 (1.16,1.43)	⊢•-1	1.16 (0.96,1.40)	k →1
Seasonality & PPV-adjusted	analysis w/ prior COVID-19 exclusion	1.04 (0.91,1.18)	⊢ •1	1.01 (0.82,1.26)	F
Booster Dose					
Primary SCCS analysis		1.002 (0.95,1.05)	H=1	1.01 (0.96,1.07)	H a -1
Seasonality adjusted analysi	S	1.05 (1.001,1.11)	⊢ ⊷I	1.06 (1.01,1.11)	⊦ +1
Excluding cases w/ prior CO	VID-19	1.01 (0.95,1.06)	H=1	1.01 (0.95,1.06)	i <mark>i</mark> i i
Seasonality adjusted analysi	s w/ prior COVID-19 exclusion	1.06 (1.003,1.12)	⊦++	1.05 (0.998,1.11)	 ⊷1
No primary series restriction		0.996 (0.96,1.04)	Hel	1.005 (0.97,1.04)	H
PPV adjusted analysis		1.004 (0.94,1.07)	⊢ , I	1.01 (0.95,1.08)	H H H
0.6 1.0 1.4 1.8 2.2 0.6 1.0 1.4 Incidence Rate Ratio			1.0 1.4 1.8 2.2		

Statistically significant results (increased risk) related to the most adjusted analysis are highlighted. *PPV=positive predictive value.*

FDA

Discussion

<u>Strengths</u>

- SCCS study design provides adjustment for potential timeinvariant confounding
- Large population-based database facilitates more precise evaluation of AE
- Study findings are generalizable to the U.S. population aged 65 years and older

Limitations

- Potential exposure and outcome misclassification in real world data
- Low PPV for some AE
- Potential misspecification of risk and control intervals
- Potential for residual confounding

Conclusion

- COVID-19 vaccine safety surveillance requires rapid detection while ensuring accurate assessments of risk following vaccination
- The objective of signal detection studies are to rapidly identify potential safety signals while data are still accruing
- The SCCS design with sensitivity analyses enable evaluation of safety outcomes while accounting for time-invariant confounding and adjusting for various forms of bias

FDA

Thank You!

• U.S. FDA CBER:

- Joann Gruber, PhD
- Tainya C. Clarke, PhD, MPH
- Carla Zelaya, PhD
- Richard A. Forshee, PhD
- Steven A. Anderson, PhD, MPP
- Acumen LLC
- CMS

Conclusions

Carelon Research | 56

FDA considerations for the use of RWE

- 1. Are the data fit for use (relevant and reliable)?
- 2. Can the study design used to generate RWE provide adequate scientific evidence?
- 3. Does study conduct meet FDA regulatory requirements?

Integrating multiple sources of RWD increases both the opportunities and the challenges

Upcoming RWD Sessions at the Conference

Tuesday, May 7

8:30AM - 9:45AM PLENARY SESSION

200: Missing Link for HEOR: A Path Forward for HEOR Data Integration

10:15AM - 11:15AM CONCURRENT BREAKOUT SESSION 4

205: Instrumental Variables: Revolutionizing Evidence Generation Using Real-World Data

12:15PM - 12:45PM EXHIBIT HALL THEATER

220: Innovative Strategies for Fit-for-Purpose RWE Research: Maximizing Data Completeness and Accuracy

1:45PM - 2:45PM CONCURRENT BREAKOUT SESSION 5

225: Bridging Real-World Data and Regulatory Decision-Making: The Role of AI in External Control Arm Development

227: Revolutionizing Regulatory Pathways: Unleashing the Power of Real-World Evidence, Adaptive Trials, and Synergistic Collaboration for Expedited FDA Device Approval, Breakthrough Designation, and CMS Reimbursement

Wednesday, May 8

8:00AM - 9:00AM CONCURRENT BREAKOUT SESSION 7

303: Real-World Evidence for Crossover Adjustment: Challenges, Opportunities, and Newly Proposed Methods

Thank you!

Please reach out with any questions and comments to:

rwe@carelon.com