INTRODUCTION

- Value assessment quantifies the relative value of healthcar interventions and guides healthcare decisions. [1,2]
- Cost-effectiveness analysis (CEA) is the de facto method f value assessment. [2,3]
- CEA utilizes quality-adjusted life year (QALY) to measure health benefits. [2,3]
- However, with the growing emphasis on patient involvement in healthcare decisions and their preferences for aspects of treatment beyond QALYs, there's a need for patient-centered value assessment. [4-6]
- Patient preferences derived as uptake probability from discrete-choice experiment (DCE) can be included into CE/ for patient-centered value assessment.

STUDY OBJECTIVE

To explore whether patient preferences derived as upta probability from pilot DCE for two hypothetical treatments can inform CEA to align with the goals of patient-centered value assessment.

METHODS

Participants

- COPD patients in the US were recruited through ResearchMatch.
- Eligibility: 18 to 88 years old who has used or been offered medication and can read and write English.
- Eligibility was confirmed over a 10-min phone interview.
- Participants provided verbal consent for their participati

Survey Questionnaire

 A cross-sectional web-based Qualtrics^{XM} survey that consisted of a demographics questionnaire, COPD Assessment Test (CAT), DCE choice task and attribute importance questionnaire.

Attributes and Levels

Six attributes: CAT symptom score improvement, docto response time, medication dose frequency, treatment information source, side effects management, and outpocket cost, along with their levels, were selected base on previous formative analysis. [6]

Experimental Design for DCE

- Orthogonal design generated nine choice tasks, each v three hypothetical treatment options (A, B, and C).
- Two hold-out tasks were added for internal validity.
- The DCE was pre-tested with 10 participants.
- All participants responded to 11 choice tasks with no op out options.

Generating Uptake Probabilities from Discrete-Choice Experiment-Derived Preferences for Application in **Patient-Centered Value Assessment**

Nabin Poudel, PhD¹; Salome Ricci, PharmD, MS¹; Susan dosReis, PhD¹; Alejandro Amill-Rosario, PhD¹; Julia F. Slejko, PhD¹ ¹University of Maryland School of Pharmacy, Patient-Driven Values in Healthcare Evaluation (PAVE) Center, Baltimore, MD

METHODS
 Demographics summarized using descriptive statistic (mean for continuous, frequency for categorical)
 Multinomial Logit Model estimated the part-worth utility
 Uptake for two hypothetical treatments was estimate
using an established method. [7]
$Pj = \frac{\exp(\text{utility for treatment j})}{\sum_{j \in (1,n)} \exp(\text{utility for treatment j})}$
Where, j=treatment alternative, n=number of treatme
 Out-of-pocket costs varied between \$90 and \$120 keeping all other attributes unchanged.
Hypothetical treatments
• CAT symptoms score improves by 4 points.
 The medication is taken 2 times per day. Manage side effect by no change.
• Out-of-pocket cost \$90 per month.
Ireatment A
 CAT symptoms score improves by 6 points. The medication is taken 1 times per day.
Manage side effect by no change.
Treatment R
Application to Cost Effectiveness Analysis
 Incremental Cost (Δ Cost) =Cost for Treatment B-Cost of Treatment A. [8]
 Incremental Benefit (Δ Benefit)
= (Uptake for treatment B- Uptake for treatment A)*1 hypothetical cohort
• Incremental cost-effectiveness ratio (ICER) $-\Delta Cos$
Δ Bene
RESULTS
 A total of 30 COPD patients (50% male, 87% White, 50
with public-only insurance) with mean age of 67 (SD=1
score value of 19.9 (SD=7.2) years since COPD diagnosis, and score value of 19.9 (SD=7.1) were included.
 MNL results showed that out-of-pocket cost was the model
important attribute with conditional relative importance
(2.65), tollowed by CAT symptom score improvement (medication dose frequency (0.76), treatment information
source (0.64), doctor response time (0.21), and side ef
management (0.09).
 No change in levels for doctor response time and side management.
management

CONTACT INFO:

npoudel@rx.umaryland.edu

PCR144

Chan \$30 p \$90 tin Manage side effects Out-of-pocket The medicine is taken by **Attributes and Levels**

REFERENCES 回想法国 SCAN ME **ISPOR 2024**

https://www.linkedin.com/in/nabin-poudel-27942659/