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What is Parkinson’s Disease (PD)

2nd most common neurodegenerative disorder.

MORTALITY

>3X GREATER

for PEOPLE WITH PARKINSON’S than

for those without the disease (Hamilton & Yang et al. 2019)

TOTAL ANNUAL COST OF PARKINSON'S
DISEASE IN THE U.S.

= $51.9 BILLION



What is Parkinson’s Disease (PD)

Parkinson’s Disease (PD) occurs when dopamine-producing cells in the
basal ganglia die, often due to environmental exposures.

The basal ganglia are involved in movement planning and execution, but

also in various nonmotor functions.
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Parkinson’s disease symptoms are assessed clinically with
a standardized motor exam (“MDS-UPDRS-III")

3.6b. Pronation-supination movements-LUE (2/4, SAF)

3.17b. Rest tremor amplitude-LUE (2/4, SAF)

3.17b. Rest tremor amplitude-LUE (2/4, SAF)

Other domains - gait, balance, speech, masked face



Our center uses motion
capture technology
during behavioral testin
to make measurements
more fine-grained

58

MOVEMENT DISORDERS MOMENT

Use of 3D Motion Capture
for Kinematic Analysis in
Movement Disorders

and clin
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Three-dimensional

(3D) motion

capture, a digital

method of track-
(i ing and measuring
| body movements
in space, has applications in various fields, including sports,
entertainment, industrial engineering, and clinical practice.
The fundamental principle of this technology involves
using a precise arrangement of numerous cameras to track
and record body motions in 3 dimensions.

State-of-the-art motion capture systems achieve the high-
est level of accuracy by using reflective markers placed on
predetermined anatomic landmarks. Although there is no
universally agreed-upon set of kinematic markers, the com-
monly used ones, such as the Helen Hayes and Cleveland
Clinic marker sets, have many similarities and are often refer-
enced. The markers are illuminated by multiple fixed cameras
projecting light at specific frequencies, which is then reflected
and captured by the cameras. The precise positioning of the
cameras enables specialized software to use images from
multiple cameras to calculate the exact 3D position of each
marker through triangulation. By incorporating kinematic
models based on participant-specific measurements and
anthropometric reference data, these 3D marker coordinates
can be transformed into clinically relevant variables, such as
patterns of flexion and extension of individual joints over
time. Because of the logistical challenges associated with
applying markers and calibrating motion capture systems
for individual patients, emerging markerless motion capture
technologies use recent advances in computer vision tech-
nologies to achieve similar results using synchronized record-
ings from consumer-grade video cameras. Validation of
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hnology, 3D motion capture, can improve diagnosis, clinical
ical trial precision in movement disorders.
ripathi, MD, MS,* J. Lucas McKay, PhD, MSCR,* and Christine D. Esper, MD, FAAN

these markerless approaches against the standard markered
systems is ongoing.' Data from 3D motion capture can be
used in clinical practice to measure movements including
joint angles, gait characteristics, and tremor amplitudes and
frequency.

Itis the authors belief that 3D motion capture holds
promise as a valuable tool for neurologists, offering poten-
tial benefits by augmenting data captured in validated
clinical rating scales, minimizing subjectivity associated
with human raters, and enhancing reliability. It allows for
continuous measurements of symptom severity, poten-
tially surpassing the precision of ordinal clinical rating
scales. This heightened precision may enhance sensitivity
in identifying preclinical disease, disease progression, and
postintervention changes, and may assist in the diagnostic
process (eg, tremor categorization).

Motion Capture

The authors’ center (Emory University School of
Medicine, Atlanta, GA) uses a Vicon (Hauppauge, NY)
3D optical motion capture system instrumented with 14
Vicon Vero cameras and 3 FLIR (Wilsonville, OR) Blackfly S
BFS-U3-2353C cameras for color video, a raised floor and 2
AMTI (Arlington, VA) HPS400600HF-2K-SYS force plates,
Nexus (Austin, TX) v2.15 software, and a Vicon Lock box to
integrate analog signals with the system. The motion cap-
ture system is capable of triangulating and recording the
instantaneous 3D coordinates of each infrared reflective
spatial marker attached to the individual’s skin or cloth-
ing before motor testing in real-time. Sixty spatial mark-
ers are applied to a standardized set of bony landmarks
(augmented Helen Hayes full body marker set; Figure 1,
A and B). Each marker is an infrared-reflective sphere with



Tremor quantification in EMR
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Gait outcomes
in EMR

GAIT ANALYSIS

Spatiotemporal
Indices:
Step Length Avg (cm)
Standard Deviation
Number of Steps
Stride Length Avg (cm)
Standard Deviation
Number of Strides
Forward Velocity Avg
(em/s)
Standard Deviation
Number of Strides
Cadence Avg
(steps/min)
Standard Deviation
Number of Steps
Total Support Time
(%)
Standard Deviation
Number of Strides
Swing Phase (%)
Standard Deviation
Number of Strides
Initial Double Support
Time (%)
Standard Deviation
Number of Strides
Single Support Time
(%)
Standard Deviation
Number of Strides
Step Width (cm)
Standard Deviation
Number of Trials

RIGHT NORMALS

45.06
1.81
15
93.94
2.65
12
75.25

2.57
12
95.52

225
12
65.82

0.85
12
34.19
0.85
12
15.06

138

35.89

1.64
1
15.49
1.08
5

64.88
76
10
129.82
15.05
10
118.34

17.83
10
109.46

8.52
10
60.56

0.87
10
39.44
0.87
10
10.53

0.83

39.44

0.87
10
11.97
33
10

LEFT

49.18
1.68
13
94.57
2.57
11
75.37

2.6
11
95.4

3.02
11
64.11

0.85
12
15.49
1.08
5
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Figure 3. Kinematic analysis of gait in Parkinson disease. Images corresponding to the right (A) and left (B) sides of the body

are shown. Each subplot shows an individual sagittal plane joint angle versus time, expressed as 0 to 100% of the gait cycle.
Comparison of the shoulder and elbow (top 2 rows; blue) versus reference data (gray) reveals frank reduced arm swing (eg, on the
right side [A], 3.7 degrees of shoulder motion for the individual versus 21 degrees of motion for the reference data). Note also the
increased fixed flexion of the elbow on the right side—an asymmetry common in Parkinson disease. This individual’s lower-limb
gait patterns were not remarkably different from those of healthy individuals (HIP_FLEX, KNEE_FLEX, ANK_FLEX).



'OFF' phase
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Freezing-of-Gait (FOG)

FoG is “mysterious”
FoG can be resistant to pharmacological medications

FOG phenotypes are varying across patients :
mixture of tremor (violent shakes) and rigid (akinetic)
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Clinical standard
measurements for FOG
are insufficient

Movement
it =

CLINICAL PRACTICE

The New Freezing of Gait Questionnaire:
Unsuitable as an Outcome in Clinical Trials?

Femke Hulzinga, MSc,' © Alice Nieuwboer, PhD, Bauke W. Dijkstra, MSc,’ Martina Mancini, PhD,? Carolien Strouwen, PhD,
Bastiaan R. Bloem, MD, PhD,* and Pieter Ginis, PhD"*

ABSTRACT: Background: Freezing of gait (FOG) is a common gait deficit in Parkinson’s disease. The New
Freezing of Gait Questionnaire (NFOG-Q) is a widely used and valid tool to quantify freezing of gait severity.
However, its test-retest reliability and minimal detectable change remain unknown.

Objective: To ine the test-retest reliability and i of the NFOG-Q.

Methods: Two groups of freezers, involved in 2 previous rehabilitation trials, completed the NFOG-Q at 2 time points
(T1 and T2), separated by a 6-week control period without active intervention. Sample 1 (N = 57) was measured in ON
and sample 2 (N = 14) in OFF. We calculated various reliability statistics for the NFOG-Q scores between Tl and T2 as
well as i ici with clinical i to explain the variability between time points.

Results: In sample 1the NFOG-Q showed modest reliability (intraclass correlation coefficient = 0.68 [0.52-0.80])
without differences between T1 and T2. However, a minimal detectable change of 9.95 (7.90-12.27) points
emerged for the total score (range 28 points, relative minimal detectable change of 35.5%). Sample 2 showed
largely similar results. We found no iatit between cogniti lated or disease severity-related
outcomes and variability in NFOG-Q scores.

Concdlusions: We conclude that the NFOG-Q is insufficiently reliable or responsive to detect small effect sizes, as
changes need to go beyond 35% to surpass measurement error. Therefore, we warrant caution in using the
NFOG-Q as a primary outcome in clinical trials. These results emphasize the need for robust and objective

freezing of gait outcome measures.

Freezing of gait (FOG) is a prominent and debilitating symptom
of Parkinson's disease (PD). It affects up to 80% of PD patients
during the course of the disease.'® FOG is defined as the inabil-
ity to progress forward stepping despite the intention to walk
and reach a destination.” Furthermore, FOG is one of the most
frequent causes of falls in PD, thus contributing to high fall rates
ranging from 35% up to 90%.">° FOG seriously impedes daily
life functioning and overall quality of life.”* So far, the treatment

assessment is necessary to document FOG severity and its
progression.

A recent review of Mancini and colleagues'® highlighted that
FOG assessment is hampered by several factors in clinical and labora-
tory settings. First, the episodic and unpredictable nature of FOG
increascs the likclihood of mising the event during formal or
“online” performance tests of gait. Second, various “testing effects”
may be at play that enhance or reduce the occurrence of FOG, such

of FOG, including ph logical, surgical, and

interventions, is only partially effective.*’ Therefore, new and
more personalized rehabilitation approaches are now being
developed. To evaluate their effectiveness, valid and reliable

as consciously attending to walking, stepping in broad and well-lit
corridors, and experiencing medication effects and stress.*'"!" To
overcome these issues, Giladi and colleagues'! developed the original
Freezing of Gait Questionnaire (FOG-Q), which was later revised

'KU Leuven, Department of Rehabiltation Sciences, Neurorehabilitation Rescarch Group, Leuven, Belgium; *Department of Neurology, Oregon Health & Stience
University, Portland, Oregon, USA; "UHasselt, Faculty of Rehabilitaon Sciences, Rehabilitaion Research Center, Hasselt, Belgium; *Radboud University Medical
Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertse for Parkinson & Movement Disorders, Nijmegen, the

Netherlands

*Correspondence to: Dr. Pieter Ginis, Department of Rehabilitation Sciences, Tervuursevest 101, 3001 Leuven, Belgium; E-mail: pieter.

ginis@kuleuven.be

ywords: new fieezing of gait questionnaire, freezing of gait, minimal detectable change, reliabiliy.
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Explainable Al (XAl) for FOG
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Automatically Detected FOG Score

MDS-UPDRS-IIl FOG item
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Explainable Al (XAl) for Freezing-of-Gait
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Challenges in Managing Brain Health

Projected number of older people with Alzheimer’'s Dementia

Projected Number of People Age 65 and Older (Total and by Age) in the U.S. Population
with Alzheimer’s Dementia, 2020 to 2060

Millions of people Ages 65-74 Ages 75-84 . Ages 85+

14

12

: 1in 3 seniors

6 die with Alzheimer’s or another dementia
0

Ye 20|20 20\30 20|40 20|50 20|60
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Challenges in Managing Brain Health

Unmet needs with limited number health workers

¥ A®d

20% decrease in mental health 20 states are Dementia neurology deserts
workers in the next decade

I Backgrounds I I Smart Telehealth I I Smart Hospital I I Closing I
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Machine Learning and Computing for Behavior Sensing

Machine Learning Ubiquitous Computing
Computer Vision @ (or Mobile Devices)
@A |
= @2
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D -
- Smart Telehealth
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e Mental Health
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Smart Telehealth with Multi-modal & On-device Al
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Smart Hospital with Privacy-preserving Al
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Toward Accessible, Affordable, and Fair Al for Health

Across urban and rural Including various people from
communities different gender/ethnic/socioeconomic

22
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Toward Accessible, Affordable, Fair Health Al

v Affordable, accessible health monitoring in daily living

v Help patients/clinicians to make informed decision

@@ VITAL

_ Al FOR HEALTH
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Now 2-3 years 5-10 years

In-Office Synchronous Asynchronous
Clinical Decision Telemedicine Assessment
Support Clinical Decision

Support

A longer-term
view

ML In-Loop Patient-driven
(Physician consults ML) (Patients manage data)

oy

At-home Monitoring Asynchronous Bring your own
("Holter Monitor”) Telemedicine device “BYOD”
(e.g., unreliable internet) 24
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