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• Survival heterogeneity across subgroups play a critical role in the evaluation of marketing 
authorization applications by regulatory agencies (e.g. European Medicines Agency, Food and 
Drug Administration) and reimbursement dossiers by health technology assessment (HTA) 
agencies (e.g. National Institute for Health and Care Excellence)

• However, analyses of randomized controlled trials (RCTs) typically report: 
o Kaplan-Meier (KM) survival curves for intervention and comparator arms for the overall 

trial population 
o Subgroup-specific survival information in a summarized form: forest plots displaying 

hazard ratios (HRs) across selected subgroups, mostly based on stratification factors
• Subgroup-specific KM curves are not extensively reported in clinical publications
• In the absence of clear HTA guidelines, subgroup-specific survival curves are essential for 

tailored meta-analyses & rigorous economic evaluations to address label and reimbursement 
restrictions

• Earlier work1,2 provided alternative modeling frameworks to elicit subgroup-specific survival 
with stringent assumptions on their structural forms
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Table 1. List of studies from the metastatic setting included in the 
case study

Results

Key features of the generalized set-partitioning approach
• It uses the closed-form maximum-likelihood estimate of the hazard rate for exponentially-distributed 

event/censoring times to express the HR between the arms in each subgroup. This enables the expression of 
HRs in a compact linearizable form for any given split of the patients between the subgroups (Figure 2)

• It minimizes the maximum deviation between the estimated HRs resulting from the assignment and the 
reported HRs by the forest plots across both subgroups (Figure 2)

• If the trial reports the total number of events for each subgroup in each arm, then optimization problem in 
Figure 2 could be formulated as a linear program (LP) – i.e., the objective function and constraints can be 
expressed as linear functions of the decision variables {xm,c,xm,i} – with a guaranteed global optimal solution, 
which can be obtained in a reasonably short amount of time using an open-source software. 

• However, many RCTs do not report the number of events in each arm for each subgroup. In such cases, the 
LP in Figure 2 is first parameterized with respect to combinations of numbers of events in either of the 
subgroups across the arms and then solved iteratively under all such combinations. Total number of events in 
each arm of the RCT determines the scale of the number of iterations for the LP.

• Across all solutions, the one from the LP with the number of events combination that provides the closest 
match to the reported 95% confidence intervals for subgroup-specific HRs is selected as the best-fit.

• Since the number of decision variables in the model far exceeds the number of constraints, the LP may 
admit multiple optimal solutions. Therefore, alternative optimal solutions need to be sampled to refine 
those with less desirable features.

• A secondary LP constrained to generate the minimum gap between the model-predicted and reported HRs 
for each subgroup as determined by the primary LP was repeatedly solved with differing objective function 
coefficients, which were randomly and uniformly generated between -1 and 1. The variables in the objective 
function of the secondary LP represented patients’ probability of being in subgroup 1 in each arm.

• The ties among the alternative optima sampled by the secondary LP were broken by the following steps:
o For each sampled solution, a Cox proportional hazards model was used to estimate the corresponding 95% 

confidence intervals (CIs) for each HR
o Estimated boundaries of 95% CIs of each HR were compared to their reported counterparts from the RCT 
o The solution providing the minimum aggregate deviation between the boundaries of 95% CIs of estimated 

and reported HRs was favored
• When sampling alternative optima, to avoid numerical instability issues, the equality constraints that ensure 

the secondary LP to generate an optimal solution to the primary LP were perturbed by a pre-specified tiny 
error margin.

Synopsis: Probabilistically assign each individual patient to one of the two mutually 
exclusive subgroups in each arm so that resulting HRs for both subgroups are identical or 
comparable to their reported counterparts (Figure 1)

• Generalized set-partitioning approach accurately estimated number of events from subgroup 1 
in each arm, largest difference between number of deaths is less than 20 (Figure 3).

• Predicted subgroup-specific survival curves were comparable to the reported curves visually 
(Figure 4).

• Across all subgroups, average absolute gap between predicted and reported monthly survival 
rates was ≤5% (Table 3). 

• Predicted survival curves laid within the 95% CIs of the reported survival curves in 83% 
(metastatic) and 79% (adjuvant) of the time (Table 3).  

• Predicted RMSTs were within the 95% CIs of their reported counterparts in 68 (metastatic) and 
63 (adjuvant) subgroups (Table 3).

• Average relative gap between predicted and reported number of deaths across all subgroups 
was 8.5% (metastatic) and 2.3% (adjuvant) (Table 3).

• For the test cases in the metastatic setting, generalized set partitioning method performed 
better than RMST-based exponential and Weibull models whereas it performed comparable to 
the RMST-based loglogistic model.

• For the test cases in the adjuvant setting, generalized set partitioning method performed 
substantially better than RMST-based parametric models

Table 3. Summary & comparison of current modeling approach to the 
reported data & predictions from previously published parametric modeling 
approaches

Conclusions
• In the absence of subgroup- and arm-specific number of events data, 

generalized set partitioning method provided reasonably accurate 
estimates.

• Proposed set partitioning framework: 
o Provides a distribution free, flexible and computationally tractable 

approach for eliciting unreported subgroup-specific survival from 
aggregate level RCT data by generating easy-to-interpret 
solutions.

o Is scalable to settings with missing survival data for more than two 
subgroups

o Enables indirect efficacy comparisons and meta-analyses across 
subgroups

• Compared to precedent models that elicit subgroup-specific survival 
using RMST as an objective criterion and assuming parametric forms 
(exponential, Weibull & loglogistic) for the survival distributions of 
subgroups, the set partitioning approach:
o Generated highly robust and more precise results with a superior 

performance in almost all performance metrics
o Produced visually more plausible outcomes while maintaining 

critical censoring information across all subgroups enabling the 
derivation of confidence bands for subgroup-specific survival 
curves 

o Was able to incorporate 95% CI information on the HRs of both 
subgroups reported by the forest plots into curve selection 

o Was free of convergence issues during optimization and the need 
for a pre-specified threshold follow-up time for the definition of 
its objective function. 

Objective
• Develop an optimization-based approach to elicit unreported 

subgroup-specific KM curves and underlying cumulative event data 
using aggregate-level RCT data

*Plot is adapted from Zhu AX, et al. Lancet Oncol 2015;16:859–870.  Note: Vertical markers on KM-plots represent censoring information

Figure 1. Schematic overview of the approach: An example from 
REACH trial of second-line treatment for advanced hepatocellular 
carcinoma

KM-curves for overall survival for each arm* Example: If subgroup-specific survival with 
respect to α-fetoprotein levels were sought
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Figure 2. Optimization model
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em,i: Event time for subject 
m in intervention arm
dm,i: Censoring indicator for 
subject m in intervention 
arm

em,c: Event time for subject 
m in comparator arm
dm,c: Censoring indicator for 
subject m in comparator 
arm

Testing the performance of the generalized set-partitioning approach
• All codes were written in R programming language; lpSolveAPI package of R was used for 

solving both primary and secondary LP models
• The method was validated using RCTs of gastro-intestinal cancers reporting subgroup-

specific KM curves for overall survival (OS) in metastatic setting and different endpoints in 
adjuvant settings: 
o Metastatic setting: 18 distinct RCTs with 96 subgroups (Table 1)
o Adjuvant setting: 12 distinct RCTs with 80 subgroups (Table 2)

• Predictive performance of the approach was evaluated by several measures for a total of 
176 subgroups (Tables 1 and 2) 

• Model-predicted number of events was compared the actual number of events for the RCTs 
that reported these outcomes

Table 2. List of studies from the adjuvant setting included in the 
case study

No Tumor Endpoint Study/ Trial Subgroup 1 Subgroup 2

1

EC/GC

OS
Burmeister et al. 

(2005)5 SCC Non-SCC 

2 PFS
Burmeister et al. 

(2005)5 SCC Non-SCC

3 DFS JCOG9204 Node negative Node positive 
4 OS SAKK75/08 AC SCC

OS CROSS SCC AC5
6 PFS CROSS SCC AC
7 OS NeoRes I SCC AC
8

CRC

OS MOSAIC Stage II Stage III
9 DFS MOSAIC Stage II Stage III
10 OS NSABP C-07 Age <70 Age ≥70
11 DFS NSABP C-07 Age <70 Age ≥70
12 OS NSABP C-07 Stage III Stage II
13 DFS NSABP C-07 Stage III Stage II
14 DFS SCOTT FOLFOX CAPOX
15 DFS TOSCA Stage II Stage III
16 OS S-AVANT T1-3 T4
17 DFS S-AVANT T1-3 T4
18

HCC

OS SHARP BCLC B BCLC C 

19 OS SHARP
Normal 
bilirubin

Elevated 
bilirubin

20 PFS Kudo et al. (2011)6 Japanese Korean

*Subgroup-specific KM curves are not reported, 
these subgroups were not used for validation
HCC: hepatocellular carcinoma, EC: esophageal 
cancer, GC: gastric cancer, CRC: colorectal cancer

AC: adenocarcinoma; BCLC: Barcelona clinic liver cancer staging system; CAPOX: Oxaliplatin 
and capecitabine; CRC: colorectal cancer; DFS: disease-free survival; EC: esophageal cancer; 
FOLFOX: Folinic acid, fluorouracil and oxaliplatin; GC: gastric cancer; HCC: hepatocellular 
carcinoma;  OS: overall survival; PFS: progression-free survival; SCC: squamous-cell carcinoma; 

Performance Measures
For each subgroup, quality of the predictions from the model was assessed visually and evaluated statistically 
to the data estimated/reported from the RCTs via: 
1. Survival prediction accuracy: % of times in which model-predicted survival rate fell within the 95% CI of 

the reported survival rate
2. Restricted mean survival time (RMST) gap (ΔRMST): % gap between the model-predicted RMST and the 
RMST estimated from the reported KM-curve 
3. RMST alignment: model-predicted RMST vs. 95% CI of the RMST estimated from the reported KM-curve
4. Average (avg.) survival rate gap [ΔS(t)]: Avg. absolute difference between model-predicted and reported 
survival rates

Calculation of all performance metrics was based on the reported follow-up durations of the RCTs whereas 
performance metrics 1 and 4 were estimated on a monthly basis. 

Figure 3. Difference between reported and predicted number of 
deaths in the comparator arm among subgroup 1 population in 
the metastatic setting (panel [A]) and adjuvant setting (panel [B])
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These charts include only test cases that reported the number of events for each subgroup

Figure 4. Example visual comparison of model predictions to the 
reported subgroup-specific survival (with & without liver metastases in 
panels [A,C] and [B,D], respectively; placebo and fruquintinib arms in 
panels [A,B] and [C,D], respectively) in the FRESCO trial7 for the 
treatment of metastatic CRC who have progressed from second line or 
above chemotherapy* 

A B 

A B 

C D 

*Plot is adapted from Qin S, et al. OncoTargets and Therapy 2021;14:4439–4450. Note: Vertical 
markers represent censoring information, shaded areas represent 95% CI. 

Performance Metrics

Test Case
Functional Form for 
Subgroup Survival or 
modeling approach

Total 
number of 
subgroups,

n

Survival 
prediction 
accuracy*,

%

ΔRMST*,
% 

RMST 
alignment,

n (%) 
ΔS(t)*

Metastatic
setting

RMST-exponential†,1 96 50 20 45
(47) 0.103

RMST-Weibull†,2 96 73 10 66
(69) 0.054

RMST-loglogistic†,2 96 80 10 70
(73) 0.046

Generalized set-
partitioning 
approach

96 80 10 68
(71) 0.050

Adjuvant 
setting

RMST-exponential†,1 80 30 19 22
(28) 0.141

RMST-Weibull†,2 80 36 19 25
(31) 0.137

RMST-loglogistic†,2 80 54 9 47
(59) 0.063

Generalized set-
partitioning 
approach

80 79 7 63
(79) 0.047

*: Calculated as average across all subgroups in the corresponding test case. †Indicates the assumed distribution 
of subgroup-specific survival from previously published work using RMST as an objective criterion.1,2 

Test 
case

Tumor 
type Trial Subgroup 1 Subgroup 2

1

HCC

REACH
α-fetoprotein < 

400 ng/mL
α-fetoprotein 
≥ 400 ng/mL

2 REACH East-Asian Non-East Asian

3 REACH-2
REACH-2 trial 

patients

REACH trial 
patients with α-

fetoprotein 
≥ 400 ng/mL 

4 RESORCE
Last sorafenib 

dose 800 mg/day

Last sorafenib 
dose < 800 

mg/day

5 REFLECT
Patient body 

weight: <60 kg 
Patient body 

weight: >60 kg

6

EC/GC

KEYNOTE-181 PD-L1 
CPS ≥ 10% 

PD-L1 
CPS < 10%*

7 KEYNOTE-181 SCC Adenocarcinoma*

8 KEYNOTE-061 ECOG Status 0 ECOG Status 1

9 REGARD Age < 65 Age ≥  65

10 RAINBOW
Age < 65 Age ≥  65

11 TAGS With 
gastrectomy

Without 
gastrectomy

12 KEYNOTE-590 PD-L1 CPS >10 PD-L1 CPS <10

13 KEYNOTE-590 SCC Adenocarcinoma

14
GATSBY HER2 IHC3+: No 

HER2 IHC3+: 

15 SOLAR Japan South Korea 

Test 
case

Tumo
r type Trial Subgroup 1 Subgroup 2

16

CRC

RAISE
KRAS status
wild-type

KRAS status 
mutant

17 RAISE
Tumor side

(left)
Tumor side 

(right)
18 CORRECT Japanese Non-Japanese

19 ASPECCT
Prior 

bevacizumab 
No Prior 

bevacizumab

20 CRYSTAL
KRAS codon 
12/13 wt 

Metastasis LLD 

KRAS codon 
12/13 wt 
Metastasis
non-LLD

21 CRYSTAL
RAS wt 

Metastasis LLD 

RAS wt 
Metastasis non-

LLD 

22 FRESCO
Prior targeted 
therapy (anti-
VEGF/EGFR)

No Prior 
targeted therapy 

(anti-
VEGF/EGFR)

23 FRESCO Prior VEGFi No Prior VEGFi

24 FRESCO
Liver 

metastasis
No liver 

metastasis

25 XELAVIRI Male Females
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