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Disclaimer

The views expressed in this presentation are mine and not of Genesis Research Group. As an 

employee of Genesis Research Group, I am a paid consultant for Life Science companies.
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In Context: 

The fair coin 

experiment

Frequentist Bayesian

H0: p=.5

• Under the null our coin is 

fair

H1: p >.5; 

• the coin favors heads

What’s our prior belief about the 

coin? 

• We don’t have any:  

Noninformative

• It’s more likely to be fair: 

Informed

• Ask Pr(p > .5 | Data)

Run the experiment: 

Flip the coin 10x, Observe 7 heads

Evaluate our data against H0

1. Statistical test: Z-test

2. p value: 0.103

Update our belief based on our new   

information

1. Estimate posterior distribution

2. Calculate Pr(p >.5 | Data): 0.86

Fail to reject H0, our coin could still 

be fair!

The probability our coin favors 

heads is .88 



The nuts and bolts of 
Bayesian Inference
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Bayes Theorem: The heart of Bayesian analysis

Conditional Probability

𝑃 𝐴 𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

Start with 𝑃(𝐴). Use data to update to 𝑃 𝐴 𝐵 .

Example:

Let A be the event that someone you meet is from 

the Midwest. 

• Using the US census: 𝑃 𝐴 = 0.20

At dinner, you hear them order a “pop.” 

Let B denote the event that someone uses “pop.”

Given data, we now update our prior: 

𝑃 𝐴 𝐵 = 0.70
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Bayes Theorem: The heart of Bayesian analysis

Conditional Probability

𝑃 𝐴 𝐵 =
𝑃 𝐵|𝐴 𝑃(𝐴)

𝑃(𝐵)

Bayesian inference

𝑃 𝜃 𝑥 =
𝐿 𝑥|𝜃 𝑃(𝜃)

𝑃(𝑥)
• 𝜃: The quantity we want to estimate (mean, 

proportion, etc.)

• 𝑥: The data you observed

• 𝑃(𝜃): The prior distribution of 𝜃

• 𝑃(𝑥):  The marginal probability of 𝑥

• 𝐿(𝑥|𝜃): The likelihood of observing 𝑥 given 𝜃

• 𝑃 𝜃 𝑥 : The posterior distribution of 𝜃; a probability 
distribution
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First some mathematical niceties: 𝑃 𝜃 𝑥 =
𝐿 𝑥|𝜃 𝑃(𝜃)

𝑃(𝑥)

• We mostly ignore 𝑃(𝑥)

• It is a constant with respect to 𝜃

• Because of this we often use the following formula for Bayesian inference:

𝑃 𝜃 𝑥 ∝ 𝐿 𝑥|𝜃 𝑃(𝜃)
Proportional to
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The Likelihood: 𝑃 𝜃 𝑥 ∝ 𝐿 𝑥|𝜃 𝑃(𝜃)

The likelihood of observing 𝑥 given 𝜃

• The statistical model that we care about

– A binomial likelihood for a binary outcome

– A normal likelihood for a continuous outcome

– Cox model 

– Logistic model

– Poisson model

• Important Note: the likelihood is what is maximized to find the 

estimate of 𝜃 in frequentist methods but it does not consider the 

prior information!

– The estimate is based solely on the model (likelihood) and the 

observed data

𝑳 𝒙|𝜽
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𝑷(𝜽)

The Prior: 𝑃 𝜃 𝑥 ∝ 𝐿 𝑥|𝜃 𝑃(𝜃)

Selected by the researcher/statistician

• Can be informed: 

– Based on prior knowledge/data/experiences

– E.g. historical trials, RWD

• Can be noninformative:

– A flat distribution with large variance

– E.g. Normal (0, 100000)

Caution: Informed priors with low variance can influence the posterior 

distribution heavily; especially in low sample situations

Your prior belief about the distribution of 𝜃
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• The updated probability distribution of 𝜃 after collecting your data

• Used for inference in Bayesian statistics

• It is a weighted average of the prior information and your data

The Posterior Distribution: 𝑃 𝜃 𝑥 ∝ 𝐿 𝑥|𝜃 𝑃(𝜃)
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Choice of priors: Coin flip experiment
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Choice of priors: Coin flip experiment
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Posterior distribution using noninformative prior: 
Coin flip experiment
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Posterior distribution using informative prior:
Coin flip experiment
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Posterior distributions: Coin flip experiment
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The Posterior Distribution: Inference

Posterior point estimate: mean, median

95% credible interval 

• Interpreted as a 95% probability the mean is 

between two values

• Coin flip example: 

– Posterior mean (95% credible interval): 

0.67 (0.39-0.88)

Probability statements (Bayesian p-value) 

• Coin flip example: 

– Pr(p >.5 | Data): 0.88
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To Summarize:

Bayesian inference uses prior knowledge or information to inform 

your parameter estimation

• Choice of your prior information can influence results

The posterior distribution is used to make inference and has the 

nice properties of being a probability distribution

• Posterior mean with 95% credible intervals

• Probability statements (Bayesian p-values)
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