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Disclaimer

The views expressed in this presentation are mine and not of Genesis Research Group. As an
employee of Genesis Research Group, | am a paid consultant for Life Science companies.
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In Context:

The fair coin
experiment

Frequentist Bayesian

HO: p=.5
* Under the null our coin is
fair
H1l: p >.5;

* the coin favors heads

What's our prior belief about the
coin?
 We don’t have any:
Noninformative
« It's more likely to be fair:
Informed
 Ask Pr(p>.5]| Data)

Run the experiment:

Flip the coin 10x, Observe 7 heads

Evaluate our data against HO
1. Statistical test: Z-test
2. p value: 0.103

Update our belief based on our new
information

1. Estimate posterior distribution

2. Calculate Pr(p >.5 | Data): 0.86

Fail to reject HO, our coin could still
be fair!

The probability our coin favors
heads is .88




The nuts and bolts of
Bayesian Inference




Bayes Theorem: The heart of Bayesian analysis

Conditional Probability

P(B|A)P(A)

P(A|B) = P(B)
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Start with P(A). Use data to update to P(A|B).
Example:

Let A be the event that someone you meet is from
the Midwest.

« Using the US census: P(A) = 0.20

At dinner, you hear them order a “pop.”
Let B denote the event that someone uses “pop.”

Given data, we now update our prior:

P(A|B) = 0.70



Bayes Theorem: The heart of Bayesian analysis

Conditional Probability Bayesian inference

L(x|0)P(0)

P(B|A)P(A) _
P(B) PO = =50

6: The quantity we want to estimate (mean,
proportion, etc.)

P(A|B) =

x: The data you observed

P(60): The prior distribution of 6

P(x): The marginal probability of x

L(x|8): The likelihood of observing x given 6

P(8|x): The posterior distribution of 8; a probability
distribution
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L(x|0)P(6)

First some mathematical niceties: P(0|x) =

- We mostly ignore P(x)
- Itis a constant with respect to
- Because of this we often use the following formula for Bayesian inference:

4 N

Proportional to

P(0|x) < L(x|8)P(8)

o J
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The Likelihood: P(8|x) «< L(x|6)P(6)

The likelihood of observing x given 6

- The statistical model that we care about
— A binomial likelihood for a binary outcome

— A normal likelihood for a continuous outcome
—  Cox model

— Logistic model

— Poisson model

- Important Note: the likelihood is what is maximized to find the

estimate of 8 in frequentist methods but it does not consider the
prior information!

— The estimate is based solely on the model (likelihood) and the
observed data
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The Likelihood: P(8|x) «< L(x|6)P(6)

The likelihood of observing x given 6

- The statistical model that we care about

- [ A binomial likelihood for a binary outcome ]

— A normal likelihood for a continuous outcome
—  Cox model

— Logistic model
— Poisson model

- Important Note: the likelihood is what is maximized to find the

estimate of 8 in frequentist methods but it does not consider the
prior information!

— The estimate is based solely on the model (likelihood) and the
observed data
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The Prior: P(8|x) «< L(x|8)P(6)

Your prior belief about the distribution of 8

Selected by the researcher/statistician
- Can be informed:

Based on prior knowledge/data/experiences
E.g. historical trials, RWD

Can be noninformative:

— A flat distribution with large variance
—- E.g. Normal (0, 100000)

Caution: Informed priors with low variance can influence the posterior
distribution heavily; especially in low sample situations
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The Posterior Distribution: o« L(x|8)P(0)

- The updated probability distribution of 8 after collecting your data
- Used for inference in Bayesian statistics

- It 1s a weighted average of the prior information and your data

GENESIS 14
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Choice of priors: Coin flip experiment
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Choice of priors: Coin flip experiment
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Posterior distribution using noninformative prior:

Coin flip experiment
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Posterior distribution using informative prior:

Coin flip experiment
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Posterior distributions: Coin flip experiment
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The Posterior Distribution: Inference

Lower 95% CI Posterior Mean = .67 Upper 95% ClI
3.0
- Posterior point estimate: mean, median
95% credible interval
z 20 - Interpreted as a 95% probability the mean is
8 between two values
% © - Coin flip example:
& 1o — Posterior mean (95% credible interval):
0.67 (0.39-0.88)
05- Probability statements (Bayesian p-value)
/ - Coin flip example:
0.0 - 7 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 — Pr(p >.5| Data): 0.88
Proportion of Heads: p
Uninformed
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The Posterior Distribution: Inference

3.0

- Posterior point estimate: mean, median

95% credible interval
2.0

2 * Interpreted as a 95% probability the mean is
3 between two values
2 15 . :
= « Coin flip example:
£ i, — Posterior mean (95% credible interval):
0.67 (0.39-0.88)
05 Probability statements (Bayesian p-value)
« Coin flip example:
" 0.0 0.2 0.4 0.6 0.8 1.0 o Pr(p >'5 | Data) 088
Proportion of Heads: p
Uninformed
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To Summarize:

Bayesian inference uses prior knowledge or information to inform
your parameter estimation

Choice of your prior information can influence results
The posterior distribution is used to make inference and has the
nice properties of being a probability distribution
Posterior mean with 95% credible intervals
Probability statements (Bayesian p-values)
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