

Bridging the Gap: User Engagement in Developing and Implementing Digital Medication Adherence Technologies

PCR13

Presented at ISPOR 2024; May 6, 2024; Atlanta, USA

Dalma Hosszú¹, Alexandra L. Dima², Francisca Leiva Fernández³, Marie Paule Schneider Voirol⁴, Liset van Dijk⁵, Krisztina Tóth^{1,6}, Mark Duman⁷, Wendy Davis⁸, Cristian Andriciuc⁹, Rebecca Egan¹⁰, Bernard Vrijens^{11,12}, Przemyslaw Kardas¹³, Noemi Bitterman¹⁴, Iva Mucalo¹⁵, Tamás Ágh^{1,16}; tamas.agh@syreon.eu

OBJECTIVE

• To create a comprehensive framework for the development and implementation of digital medication adherence technologies (DMATech), focusing on critical stages where engagement of medication users (MUs) adds significant value

METHODS

- <u>Task 1. Development of a comprehensive framework outlining the key stages of developing</u> and implementing DMATechs
 - Targeted literature review
 - Iterative process by a group of 7 adherence/DMATech experts
- Task 2. Mapping MU engagement opportunities in developing and implementing DMATechs
 - One-day, in-person workshop with patient representatives, and adherence experts in Budapest, Hungary, on November 29, 2023
 - Selecting framework phases could benefit from MUs engagement
 - Suggesting potential types and modes of MUs engagement
 - Rating the importance of each step in the framework using a Likert scale ranging from 1 for 'Not at all important' to 5 for 'Very important'
 - Nominal group technique was used to facilitate discussion and reach consensus
 - Data analysis
 - A step with an average ranking score of ≥4.0 was considered a high-importance step.
 - The interquartile range (IQR) was employed to assess consensus strength on these ratings, with an IQR>1 indicating a lack of consensus
 - Differences between the ratings of the patient representatives and experts were tested with the Mann-Whitney U test

RESULTS

- The DMATech framework included three phases: 'Innovation', 'Research and Development', and 'Launch and Implementation', each encompassing multiple steps (Figure 1)
- The attendees included five patient representatives and nine adherence experts from various regions (Europe, North America, and Middle East)
- Identified crucial phases for MU input: context analysis, ideation, proof of concept, prototype creation, DMATech's iteration, critical evaluation, healthcare implementation, real-world assessment, and improvement (Figure 2)
- There was a divergence of consensus regarding the importance of MUs engagement in regulatory, financial, and marketing aspects (Figure 2)
- The ratings given by patient representatives and adherence experts showed no statistical differences for any of the framework's steps
- Participants concluded that it is not feasible to propose general recommendations for types and modes for MU engagement; instead, their assessments must be conducted on a case-by-case basis

Figure 1. DMATech blueprint: from idea to implementation in healthcare

INNOVATION

Context Analysis & Problem Definition

- Analysis of factors and needs of the target group
- To identify and clearly understand the problem

2. Ideation & Conceptualization

- To overview existing scientific evidence and horizon scanning
- To flesh out possible solutions
- To familiarize with existing guidelines and regulations
- To define a theoretical foundation or framework

3. Funding

 To secure financial resources necessary

RESEARCH & DEVELOPMENT

Proof of Concept

To demonstrate idea viability

Prototype Creation

To design and develop a preliminary version of the technology

3. Testing & Iteration

 To test and refine the prototype (usability, attractiveness, technical performance)

4. Regulatory Checks

 To ensure compliance with relevant regulations (digital health technology vs. medical device)

5. Early Phase Value Framework

- Identification of value attributes
- Early phase health-economic analysis

6. Critical Evaluation

- Verification, analytical validation and clinical validation of the technology
- 7. Health Technology Assessment
 - Multidisciplinary evaluation across various aspects

LAUNCH & IMPLEMENTATION

1. Regulatory

 To acquire approvals from relevant regulatory bodies

2. Financing & Reimbursement

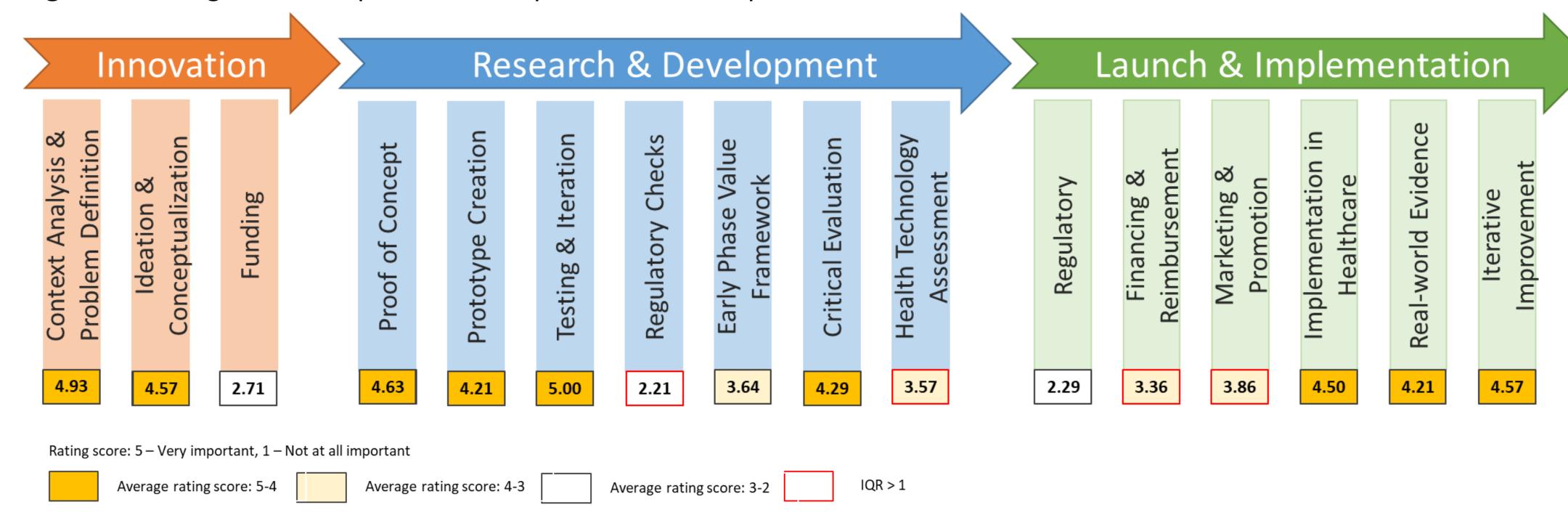
 To secure funding and ensure reimbursement for technology use

3. Marketing & Promotion

 To create awareness and interest through targeted campaigns

4. Implementation in Healthcare

 To integrate the technology into clinical settings with proper training


5. Real-world Evidence

 To assess real-world effectiveness and implementation aspects of the technology

6. Iterative Improvement

- To refine the technology based on feedback and real-world data
- To consider scientific, regulatory and technical developments

Figure 2. Ratings of development and implementation steps of DMATech

CONCLUSIONS

- The observed divergence in consensus regarding the importance of MUs engagement in regulatory, financial and marketing steps highlights the need for targeted educational programs to address potential knowledge gaps
- Future research could explore innovative methods for engaging MUs, tailoring input mechanisms to specific user needs

FUNDING

- This research is based upon work from COST Action CA19132 "ENABLE," funded by COST (European Cooperation in Science and Technology)
- The funder had no role in the study design, data collection, analysis and interpretation, or preparation of the manuscript

^{1.} Syreon Research Institute, Budapest, Hungary; 2. Sant Joan de Déu Research Institute, Barcelona, Spain; 3. Multiprofesional Teaching Unit of Community and Family Care; Andalusian Health Service; Health District Malaga-Guadalhorce; IBIMA-Platform Bionand; University of Málaga, Málaga, Málaga, Spain; 4. Medication Adherence and Interprofessionality Research and Teaching Group, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; 5. Nivel, Netherlands institution for health Services research, Utrecht, the Netherlands; 6. Bridge of Health Alliance against Breast Cancer Association, Budapest, Hungary; 7. MD Health-Care, Manchester, UK; 8. British Heart Foundation, London, UK; 9. Romanian Federation of Diabetes Associations, Cluj Napoca, Romania; 10. Serious Fun Children's Network, Norwalk, CT, USA; 11. AARDEX Group, Seraing, Belgium; 13. Medication Adherence Research Centre, Department of Family Medicine, Medical University of Lodz, Lodz, Poland; 14. Technion, Israel Institute of Technology, Haifa, Israel; 15. Centre for Applied Pharmaco, University of Pécs, Pécs, Pécs, Hungary