Cost-Effectiveness of RSVpreF in Pregnant Individuals for the Prevention of RSV **Among Infants in Canada**

INTRODUCTION

- Respiratory syncytial virus (RSV) is common among children in Canada, with severe outcomes most frequent among young infants in their first year of life
- Over 50% of RSV hospitalizations in children are among infants aged <6 months, over 80% are among infants born full term, and over 90% are among infants with no underlying comorbidities^{1,2}
- Although RSV often causes mild upper respiratory tract disease, progression to lower respiratory tract disease (LRTD) is associated with significant morbidity, mortality, and high costs, especially among young infants, those born prematurely, and those with certain risk conditions:^{3,4}
- o In December 2023, RSVpreF, Pfizer's novel RSV vaccine, was approved by Health Canada for the prevention of LTRD and severe LTRD caused by RSV in infants from birth through 6 months of age by active immunization of pregnant individuals from 32 through 36 weeks of gestational age⁵

OBJECTIVE

 To evaluate the cost-effectiveness of maternal RSVpreF for prevention of RSV among infants in Canada aged <1 year

METHODS

Model Overview

- Cohort model characterized cost-effectiveness in terms of incremental cost per quality-adjusted life-year (QALY):
- Clinical outcomes: cases of medically-attended RSV-RTD by care setting (hospital [H], emergency department [ED], physician office [PO]), attributable deaths, and QALYs
- Economic costs: direct costs, indirect costs related to caregiver work loss and future lost earnings associated with premature RSV-LRTD-related death
- Model population was characterized by age, calendar month of birth, and term status defined by gestational age in weeks (wGA) at birth (full-term, \geq 37; late preterm, 32-36; early preterm, 28-31; extreme preterm, \leq 27)
- Costs and QALYs were discounted at an annual rate of 1.5%

Estimation of Model Inputs

- Population (N=370,858 infants) was estimated based on Statistics Canada data⁶ and distributed by term status⁷
- Incidence rates (assumed to vary by term status⁸, calendar month⁹, and age¹⁰) were stratified by care setting (Table 1):
- RSV-H: based on a recent Canadian modelling study^{11,12}
- RSV-ED and RSV-PO: derived from a US-based study¹³
- Case fatality was assumed to occur among hospitalized cases only (range: 0.1-1.0 per 100 cases, age/term dependent), and was estimated based on global meta-analysis⁴ and US data¹⁴
- Age-specific rates of general population mortality¹⁵ were allocated by term status based on US data¹⁶
- Monthly vaccine effectiveness (VE) for full term/late preterm infants derived from MATISSE efficacy data (severe RSV + medically-attended (MA) LRTI for RSV-H; RSV + MA-LRTI for RSV-ED/PO)¹⁷ for 0 - <6 months; VE was then assumed to wane linearly to 0% by age 9 < 10 months (Figure 1)¹⁸
- VE for early/extreme preterm infants and infants born <2 weeks after RSVpreF administration assumed to be 0%

Estimation of Model Inputs (continued)

- \$130)

Table 1. Rates of RSV-RTD (per 100K)

Hospital Full term Late preterm Early/Extreme ED Full term Late preterm Early/Extreme PO Full term Late preterm Early/Extreme PT PT: preterm 100% 90% 80% 70% 60% 50% 40% 30%

Analyses

Alexandra Goyette, M.Sc.¹; Ahuva Averin, M.P.P.²; Emily Kutrieb, B.A.²; Erin Quinn, B.S.²; Mark Atwood, M.S.²; Derek Weycker, Ph.D.²; Ana G. Grajales, M.D.¹; Amy W. Law, Pharm.D.³ ¹Pfizer Canada Inc., Kirkland, Quebec, Canada; ²Avalere Health, Washington, DC, USA; ³Pfizer Inc., Collegeville, PA, USA

METHODS

• Direct costs per episode based on Canadian data¹⁹⁻²² (RSV-H: full term, \$9,528, late preterm, \$11,984, early preterm, \$17,635, extreme preterm, \$11,600; RSV-ED: \$341; RSV-PO:

 Indirect costs were estimated based on Canadian labor force, morbidity, and mortality data²³⁻²⁶ as well as caregiver work loss days (RSV-H: 6.7; RSV-ED: 3.4; RSV-PO: 2.6)²⁶

• RSVpreF cost was \$230 (list price); administration fee \$4.50²⁷ • Utility for infants without RSV assumed to be 1; annual QALY loss associated with RSV-RTD was 0.0157 for hospitalized infants and 0.0061 for ambulatory patients²⁸

• Age-specific utilities for adults were based on EQ-5D-5L index scores of residents from Alberta, Canada²⁹

 Caregiver QALY loss was estimated based on US data³⁰ (RSV-H: 0.0066; RSV-ED: 0.0068; RSV-OC: 0.0041)

• Year-round RSVpreF uptake was 64.8% based on maternal Tdap uptake³¹; administration was assumed to occur between 32-36 wGA (70% administered between 32-33 wGA)

						Mont	h of A	ge				
										9-	10-	11-
	0<1	1-<2	2-<3	3-<4	4-<5	5-<6	6-<7	7-<8	8-<9	<10	<11	<12
	22	38	27	18	16	13	11	9	9	10	7	7
	38	67	48	45	39	31	19	16	15	17	12	12
PT	10	18	13	43	38	30	77	64	58	67	48	48
	19	62	70	96	106	65	75	51	51	51	37	51
	33	108	121	237	261	160	128	88	87	87	63	87
PT	9	29	33	228	251	154	511	351	347	347	252	347
	82	181	225	212	241	263	242	190	254	208	221	236
	143	315	393	523	596	651	414	324	434	355	378	403
PT	39	85	107	503	574	626	1,654	1,295	1,736	1,420	1,510	1,613

Figure 1. Vaccine effectiveness

 Base case analyses evaluated the cost-effectiveness of RSVpreF vs. no intervention among infants in Canada aged <1 year, applying inputs described herein

• Deterministic sensitivity analyses (DSA) were conducted to evaluate impact of changes to vaccine uptake, RSV-H rates, medical cost of RSV-H, and initial VE

• Scenario analyses were conducted to evaluate alternative assumptions for vaccine price, discount rate, initial VE, and vaccine duration of protection (DoP)

 Probabilistic sensitivity analyses (PSA; 1,000 replications) were conducted to account for uncertainty surrounding estimates of key model parameters

Base Case Analyses

- Use of RSVpreF prevented 33% of hospitalizations, 16% of ED visits, 13% of physician office visits, and 26% of deaths versus no intervention (Table 2)
- With medical costs reduced by 28% (Figure 2) and indirect costs reduced by 18%, total costs with RSVpreF increased by 9% resulting in cost-effectiveness ratio of \$43,935/QALY from the societal perspective
- While RSV-H comprises only 11% of overall reduction in cases, 87% of the total reduction in medical care costs is attributable to RSV-H averted (Figure 3)

Table 2. Base case results

Clinical outcomes			
RSV-H cases			
RSV-ED cases			
RSV-PO cases			
No. of deaths			
QALYs			
Economic costs (millions)			
Medical care			
Vaccination			
Non-medical			
Total			
Cost-effectiveness (per QALY)			
Healthcare system			
Societal			
Figure 2. Medical costs ass			

Figure 3. Distribution of prevented outcomes

• Initial VE and waning through age 6 months were based on MATISSE, however, waning during months thereafter (i.e., 6-<10 months) were informed by evidence on kinetics and decay of maternal transfer of antibodies Conservatively assumed 0% VE for early and extreme preterm infants

- RSV rates, case-fatality, work-loss days)

1. Bourdeau M, et al. JAMA Network O

- 2. Buchan SA, et al. Pediatr Infect Dis J
- 3. National Advisory Committee on Imm reduce complications of RSV infection
- 4. Li Y, et al. *Lancet*. 2022;399(10340):
- 5. National Advisory Committee on Imm Canadian Immunization Guide. 2023.
- 6. Statistics Canada. Table: 13-10-0428
- 7. Liu S, et al. J Obstet Gynaecol Can. 8. Rha B, et al. Pediatrics. 2020;146(1):
- 9. Public Health Agency of Canada. Res
- 10.Curns AT, et al. Pediatrics. 2024;153(

ociated with RSV-RTD

LIMITATIONS

• US-specific or global data was applied in instances where Canada-specific data was not available (e.g., ambulatory

• Several benefits of maternal vaccination not accounted for (e.g., reduction in societal costs of RSV, reduction in long term consequences of RSV, protection for vaccinated women, herd immunity)

	REFERENCES
pen. 2023;6(10)e2336863.	11.Schanzer DL, et al. Pediatr Infect Dis J. 2006;25(9): 795-800.
<i>J</i> . 2023;12(7): 421-430.	12.Schanzer DL, et al. Influenza Other Respir Viruses. 2018;12(1): 113-121.
nunizations. Recommended use of palivizumab to	13.Lively JY, et al. <i>J Pediatric Infect Dis Soc</i> . 2019;8(3): 284-286.
ns in infants. 2022.	14.Hansen CL, et al. JAMA Network Open. 2022;5(2): e220527-e220527.
2047-2064.	15.Statistics Canada. Table 13-10-0713-01. 2022.
nunizations. Respiratory syncytial virus (RSV):	16.National Vital Statistics System. CDC WONDER Online Database. 2021.
•	17.Munjal I, et al. Presented at: RSVVW'24; Mumbai, India.
3-01. 2022.	18.Kampmann B, et al. <i>N Engl J Med</i> . 2023;388(16): 1451-1464.
2021;43(12): 1406-1415.	19.Interactive Health Data Application. 2019.
e20193611.	20.Ontario Ministry of Health. Schedule of Benefits: Physician Services Under
spiratory Virus Report. 2019.	Insurance Act. 2022.
(3):e2023062574.	21. Tarride J-E, et al. ClinicoEcon Outcomes Res. 2012;4: 287-298.

RESULTS

Sensitivity and Scenario Analyses

Figure 4. DSA results

Initial VE (+/-20% of base case)

Vaccine price

Figure 6. PSA results

Cost of RSV-H (+/-20% of base case)

RSV-H incidence (+/-10% of base case)

• In DSA, initial VE had the greatest impact on results (\$23K-\$82K/QALY) (Figure 4); among all other DSA, cost per QALY ranged from \$25K-\$58K

• In scenario analyses, vaccine price had greatest impact on results (\$6K/QALY) (Figure 5); among other scenario analyses, cost per QALY ranged from \$30K-\$64K • Increasing vaccine uptake to 80% prevented >4,000 additional cases of RSV-RTD

• In PSA, 97.8% of replications were below \$100K/QALY and the mean costeffectiveness ratio was \$39K/QALY (Figure 6)

for pregnant individuals would substantially reduce the clinical and economic burden of RSV among young infants in Canada from the time of birth and would be considered cost-effective at list price

22.Thampi N, et al. CMAJ Open. 2021;9(4): e948-e956. 23. Statistics Canada. Table 13-10-0837-01. 2022. 24.Statistics Canada. Table 14-10-0320-01. 2023. 25.Statistics Canada. Table 14-10-0287-01. 2023. 26.Pfizer Inc., data on file. 27.Abu-Raya B, et al. Front Immunol 2020;11:1282. 28.Roy LMC. Deriving health utility weights for infants with Respiratory Syncytial Virus (RSV) 2013. 29. University of Alberta: School of Public Health. September 25, 2018. er the Health 30.Hutton D. Presented at: Meeting of the ACIP; February 23, 2023; Atlanta, GA. 31.Public Health Agency of Canada. Results of the Survey on Vaccination during Pregnancy 2021. 2022.

Poster presented at ISPOR 2024 (May 5th – 8th, Atlanta, GA, USA)