Profiling Adverse Events in Multiple Myeloma: Insights from Clinical Trials via Large Language Models

Intelligent Medical Objects

Hunki Paek, Kyeryoung Lee, Surabhi Datta, Liang-Chin Huang, Josh Higashi, Nneka Ofoegbu,, Long He, Bin Lin, Jingqi Wang, Xiaoyan Wang Intelligent Medical Objects, IL, USA CO14

Introduction

Background:

- Multiple Myeloma (MM) treatments are rapidly evolving, necessitating up-to-date analysis of adverse events.
- Extracting data manually from large sets is challenging.
- A comprehensive analysis of adverse events in MM treatment is crucial for advancing patient care..

Objective:

 Leveraging LLMs to automate data extraction, facilitating large-scale quantitative analysis of trial outcomes.

Methodology

*SEETrials: Safety & Efficacy Extraction in Oncology Clinical Trials

Characteristics overview of abstracts included

	Total	phase 1	phase 1/2	phase 2	phase 3	Not mentioned
CAR-T	130	40	16	26	5	43
BsAbs	63	19	18	10	6	10
ADC	38	10	9	10	2	7
CELMoD&Others	14	6	4	0	3	1
Total	245	75	47	46	16	61

CAR-T, chimeric antigen receptor T cell; BsAbs, Bispecific antibody; ADC, antibody drug conjugate; Cereblon E3 ligase modulator therapy, CELMoD.

Results

Performance Metrics of the SEETrials System

			STRICT		RELAXED		
Phase	No. of Abstracts	Precision	Recall	F1-score	Precision	Recall	F1-score
1	36	0.939	0.929	0.934	0.978	0.984	0.981
1/2	23	0.982	0.970	0.976	0.989	0.995	0.992
2	17	0.976	0.963	0.969	0.985	0.995	0.990
3	7	0.948	0.936	0.942	0.988	0.987	0.988
N/A	17	0.947	0.923	0.935	0.965	0.980	0.972
Total	100	0.958	0.944	0.951	0.981	0.988	0.985

Results

Comparative Landscape of Safety Entities Across CAR-T, BsAbs, and ADC therapies

Figure 1. This visual summary illustrates the percentages of abstracts with each safety-related entities across CAR-T, BsAbs, and ADC therapies, providing a comprehensive overview of their comparative clinical profiles.

Analysis of Adverse Events entities across Phases and Therapies

Figure 2. A detailed breakdown of abstract numbers with each safety-realty entity (A, B, C) and percentages of each entity out of all mentioned entities (D, E, F) is presented, categorizing clinical trials into phases 1, 1/2, 2, and 3. A and B: CAR-T cell therapies. C and D: BsAbs therapies. E and F: ADC therapies.

Results

Combined Meta-analysis and subgroup analysis

Figure 3. Combined Meta-analysis and subgroup analysis of cytokine release syndrome and neutropenia (≥Gr3) based on the mechanism of action (MOA) of treatments. A. Cytokine Release Syndrome. B. Neutropenia (≥Gr3). CAR-T, chimeric antigen receptor T cell; BsAbs, Bispecific antibody; ADC, antibody drug conjugate.

Conclusion

Our SEETrials

- Achieved high accuracy and generalizability to diverse drug modalities and disease domains.
- Enable to streamline large-scale dataset analysis on adverse events.
- Advance clinical trial research by ensuring timely and accurate data extraction
 of adverse events and providing crucial insights for health economics and
 outcomes research.