Brief Overview of Methods for
Bayesian Power Borrowing
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Deciding on the Hybrid Approach

Early phase studies

Increase power for small samples

Generate hypotheses for later phase studies
Unbalanced randomization

Higher number of patients randomized to treatment
Ethical concerns

Recruitment challenges

Rare diseases
Pediatrics
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Assessing Suitability of External Data

External data: Careful consideration of external data is key
Historical trial data - Are the datasets compatible?
000 O « Are there notable differences?
W —  Populations
]_ }ﬂ} ]_ — Geographies
O 00O — Temporal
1 V V-IH}V X — Baseline characteristics
l- -_1 — Same standard of care

l/ mmmm A Consequences:

; *  Well-chosen: increased power
——————— « Poorly-chosen: bias, inflated type | error

Statistical methods cannot rescue
poorly chosen external data
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Historical trials are a natural choice
« Placebo group from earlier phase trial

« Placebo group from an earlier trial in the same indication with a
What External different treatment

Data to
Consider?

— Can we use real-world data?
« Challenges similar to those found in ECAs
« Weighting difficult; regression adjustment is an option




Approaches

We will discuss the following approaches:

Power prior

Hierarchical model / meta-analytic predictive (MAP) approach
Mixture prior
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Bayesian Method #1: Power
Prior




How Does the Bayesian Power Prior Work?

Incorporates individual patient data from external data source

Amount of borrowing controlled by a parameter a« which downweighs the
Influence of the external data
Higher values = more borrowing
Lower values = less borrowing
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Ibrahim, Joseph G., et al. "The power prior: theory and applications." Statistics in Medicine 34.28 (2015): 3724-3749.
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Analysis without the External Data
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Components of the Bayesian Power Prior

n(6 | D,H,a) xL(8|D)L(6|H)*r(0)

RRRRRRRR

GGGGG




Isolating the Effect of the External Data
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Isolating the Effect of the External Data
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L(O| H)*
g

It mustbethat) <a < 1.

If « = 1, complete pooling of current and external data
If « = 0, external data are ignored
-
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Choosing a

How to choose a

Set a yourself (fixed power prior)

Use the data to set a fixed value for a (empirical Bayes power prior)
Use the data to adaptively choose a (modified power prior)

Note: using a fixed value of a significantly simplifies calculations.
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Bayesian Method #2:
Hierarchical Model / Meta-
Analytic Predictive Approach




Hierarchical Model / MAP approach

Hierarchical models are common in Bayesian methodology

Allow us to “borrow” information from the external data and
apply it to our current trial

The amount of borrowing is controlled by a variance parameter

Useful when there are several external datasets
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Schmidli, Heinz, et al. "Robust meta-analytic-predictive priors in clinical trials with historical control
information.” Biometrics 70.4 (2014): 1023-1032.
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Hierarchical Model / MAP approach

- Low heterogeneity between studies (low variance)
- High amount of borrowing

MAP: Meta-analytic predictive

Orange dot = Current study
Blue dots

= External studies
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Hierarchical Model / MAP approach

- High heterogeneity between studies (high variance)
- Low amount of borrowing

Orange dot = Current study
° Blue dots = External studies

@
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MAP: Meta-analytic predictive
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Bayesian Method #3: Mixture
Prior




What is a Mixture Prior?

A mixture prior is a prior composed of more than one component.

Component #1: A general, non-informative prior distribution for the current trial

Component #2: An informative prior distribution determined by external data

P(@) = (1 —a) - Poyrrent(0) + a - Pexternai(6),

where 0 < a < 1.

GGGGG

21



p

Belimumab for the treatment of systemic
lupus erythematosus

Systemic lupus Benlysta® (belimumab)
erythematosus (SLE)

Sponsor: Glaxo-Smith-Kline

Population: Pediatric (ages 5-17)

Endpoint:

Response at week 52

Source: BLA 125370/s-064 and BLA 761043/s-007 Multi-disciplinary Review and Evaluation Benlysta®
(belimumab) for Intravenous Infusion in Children 5 to 17 Years of Age with SLE 22



https://www.fda.gov/media/127912/download
https://www.fda.gov/media/127912/download

Belimumab for the treatment of systemic @
lupus erythematosus L
% Unmet Need in Pediatrics:

“[T]here is a high unmet medical need for efficacious and safe
treatments for pediatric patients with SLE.”

“There are currently no treatments specifically approved for this
subpopulation.”

% Enrollment Difficulties:

“...the Applicant requested to ... lower the overall target

enrollment from 100 to 70 subjects due to difficulties enrolling
pediatric patients between 5 and 17 years of age.”
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Source: BLA 125370/s-064 and BLA 761043/s-007 Multi-disciplinary Review and Evaluation Benlysta® (belimumab)
for Intravenous Infusion in Children 5 to 17 Years of Age with SLE
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Belimumab for the treatment of systemic @
lupus erythematosus —

Inadequate Power:

“[The trial] was not adequately powered to make a formal statistical
inference on its own due to ... enroliment limitations and the rarity
of disease in pediatric subjects....”

Similarity with Adults:

“The clinical review team believes that the disease and patient
response to treatment are likely to be similar between the adults
and pediatric subjects.”
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Source: BLA 125370/s-064 and BLA 761043/s-007 Multi-disciplinary Review and Evaluation Benlysta® (belimumab)
for Intravenous Infusion in Children 5 to 17 Years of Age with SLE
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https://www.fda.gov/media/127912/download
https://www.fda.gov/media/127912/download

Bayesian Mixture Prior

ldea: Analyze the pediatric study using a mixture prior informed
by the adult study

Pediatric study prior:

P(H) = (1 — Cl) ) Ppeds(g) t+a- Padult(e)

GENESIS 25
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Bayesian Mixture Prior

ldea: Analyze the pediatric study using a mixture prior informed
by the adult study

Pediatric study prior:

' Ppeds(g)

1

Non-informative
prior

GENESIS 26
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Bayesian Mixture Prior

ldea: Analyze the pediatric study using a mixture prior informed
by the adult study

Pediatric study prior:

Padult (0)

ESIS

Informative prior
based on adult study
GRR o U'-l!
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Bayesian Mixture Prior

P@O)=(1-a)- Ppeds(e) ta- Padult(e)

If a = 0, only noninformative prior is used.

If a =1, only informative prior based on adult study is used.

Additional steps:
Vary a between 0 and 1 in steps of 0.05.

Find the minimum value of a such that credible interval of

efficacy parameter does NOT contain 0O, i.e., statistical
significance.
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Bayesian Mixture Prior

Welght (a) Mean Log Odds Median Log Odds 95% Credible Posterior

Interval Probability of

Efficacy

0.00 0.36 0.36 (-0.46, 1.18) 081
0.05 0.39 042 (-0.41,1.13) 0.85
0.10 0.41 0.44 (-0.36, 1.08) 0.89
0.15 0.42 0.45 (032, 1.04) 0,91
0.20 0.43 046 (-0.27, 1.00) 0.93
0.25 044 046 (-0.23,0.95) 0.94
0.30 0.44 0.46 (-0.19,0.91) 0.95
0.35 0.45 046 (-0.15, 0.87) 0.96
0.40 0.45 046 (-0.11,0.84) 0.96
0.45 0.45 0.47 (-0.06, 0.80) 0.97
0.50 046 047 (-0.01, 0.78) 0.97
0.60 0.46 0.47 (0.09,0.75) 0.98
0.65 0.46 0.47 (0.14, 0.74) 098
0.70 0.46 0.47 (0.17,0.73) 0.99
0.75 0.47 0.47 (0.19,0.72) 099 Source: BLA 125370/s-064
0.80 047 047 (0.21, 0.72) 0.99 and BLA 761043/s-007 Multi-
0.85 0.47 0.47 (022,0.71) .99 gisclipli?arvBF:en\:ies\;\;%nd
0.90 047 047 (0.23,0.71) 1.00 ( bve?irzi:ﬁgb) forvl ntravenous
0.95 0.47 0.47 (0.24,0.70) 1.00 Infusion in Children 5 to 17
1.00 0.47 0.47 (0.24,0.70) 1.00 Years of Age with SLE
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https://www.fda.gov/media/127912/download
https://www.fda.gov/media/127912/download
https://www.fda.gov/media/127912/download
https://www.fda.gov/media/127912/download
https://www.fda.gov/media/127912/download
https://www.fda.gov/media/127912/download
https://www.fda.gov/media/127912/download

Power prior i_‘

v' Most studied
v Relatively easy to fit models with fixed weights
Why choose
e sRnzalelo k@M Hierarchical/MAP
N v' Convenient when you are incorporating several
datasets
&

Bayesian mixture prior
v' Has been used in regulatory settings
v' Don’t need IPD

nnnnnnnn MAP: Meta-analytic predictive; IPD: Individual patient data %
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Recommendations

a Always do a sensitivity analysis

a Simulation to determine Type | error and power

= Varying treatment effects
0 = Varying degrees of heterogeneity
= Varying sample sizes
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