Cost-effectiveness analysis of nivolumab plus relatlimab (NIVO+RELA) versus current standard of care (SOC) for patients with unresectable or metastatic melanoma in Canada

Elsa Mameri¹, Laura McDonald², Julie Villeneuve¹, <u>Flavia Ejzykowicz³</u>, Barbara Baginska-Dudek⁴, Anna Tokarz⁴, Georgia Yates⁵, Rui Cai⁶ ¹ Bristol Myers Squibb, St. Laurent, QC, Canada; ² Bristol Myers Squibb, West Windsor, NJ, US; ⁴ Parexel International, Krakow, Poland; ⁵ Parexel International, London, LON, UK; ⁶ Parexel International, Gouda, ZH, Netherlands;

Background

- Melanoma is the fourth most common cancer in Canadians aged between 30 and years.[1] The age-standardized incidence rate is 23.5 per 100,000.[1] An estimated 9,000 people were diagnosed with melanoma in 2022.[2] Melanoma accounted for 3.8% of new cancer cases and 1.5% of cancer deaths in 2021 in Canada.[1]
- The treatment landscape for advanced, unresectable melanoma has shifted in the past decade, with the introduction of immuno-oncology (IO) therapies.[3] However, there remains an unmet need for novel IO therapies with more favorable risk-benefit profiles.
- Programmed cell death 1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) are distinct inhibitors immune checkpoints. In preclinical models, dual inhibition of PD-1 and LAG-3 showed synergistic antitumor activity.[4-5]
- Combined PD-1 and LAG-3 inhibition with nivolumab plus relatlimab (NIVO+RELA) as a new fixed-dose combination (FDC) was evaluated in the phase 2/3, randomized, open label, double blind RELATIVITY-047 clinical trial: • NIVO+RELA demonstrated a statistically significant and clinically meaningful progression free survival (PFS) benefit vs nivolumab monotherapy (NIVO) (hazard ratio (HR) = 0.75 for intent-to-treat (ITT) population at the primary endpoint analysis in March 2021,
- median follow-up: 13.2 months).[6] • A clinically meaningful (not statistically significant) overall survival (OS) improvement vs NIVO with no delayed effect was observed (HR = 0.80 at the OS final analysis in October 2021, median follow-up: 19.3 months).[7]
- NIVO+RELA received notice of compliance for patients with unresectable or metastatic melanoma from Health Canada [8] and has been recommended for reimbursement by the local health technology assessment (HTA) body, i.e. Canadian Agency for Drugs and Technologies in Health (CADTH).[9]

Objective

• To evaluate the cost-effectiveness (CE) of NIVO+RELA versus SOC for unresectable or metastatic melanoma from a healthcare payer perspective in Canada. Current SOC includes IOs: NIVO, pembrolizumab (PEMBRO), nivolumab+ipilimumab (NIVO+IPI), IPI, and BRAF/MEK inhibitors: vemurafenib+cobimetinib (VEM+COBI), dabrafenib+trametinib (DAB+TRAM) and encorafenib+binimetinib (ENCO+BINI).

Methods

Structure and modeling approach

- A partitioned survival model (PSM) was developed with three health states: progression-free (PF), progressed disease (PD), and death.
- Population: age (62 years), gender (58.3% male), in line with baseline characteristics of patients in RELATIVITY-047.
- Perspective: payer.
- Time horizon: 25 years
- Discount rates: costs (1.5%) and outcomes (1.5%), in line with CADTH guidelines.[10]
- Base case analysis: probabilistic with 4,000 Monte Carlo iterations.

Clinical inputs to inform health-state occupancy

- For within trial comparison (NIVO+RELA vs NIVO), OS and PFS data from the ITT population of RELATIVITY-047 were used (October-2022 database lock [DBL] with minimum follow-up of 21 months).[11]
- Standard parametric (exponential, Weibull, Gompertz, log-normal, log-logistic, and generalized gamma) and spline-based models with 1 or 2 knots for PFS and OS were fitted separately to the NIVO+RELA and NIVO arms.
- In addition, flexible piecewise (Kaplan-Meier, KM plus parametric) modelling was explored for PFS owing to the observed change in hazards at 3-months in both treatment arms which corresponded to the first per-protocol progression assessment, 12-weeks after randomization.
- Independent standard parametric models were used to extrapolate time to treatment discontinuation (TTD) for NIVO+RELA and NIVO.
- Curve selection was based on NICE decision support unit guidance[12] and considered long-term data and smoothed hazards in addition to statistical criteria to ensure the most plausible model was selected. The base case curve selection is shown in Table 1.
- For comparators external to RELATIVITY-047, a fractional polynomial network meta-analysis (FPNMA) was performed as the proportional hazards assumption did not hold for all studies.
- To estimate PFS and OS for the external comparators, time-varying HRs based on the best-fitting FP model were applied to the modelled PFS and OS NIVO curves from RELATIVITY-047.
- TTD for other IOs and BRAF/MEK inhibitors utilized data from the pivotal trials, where available, or the most appropriate assumptions (Table 1).

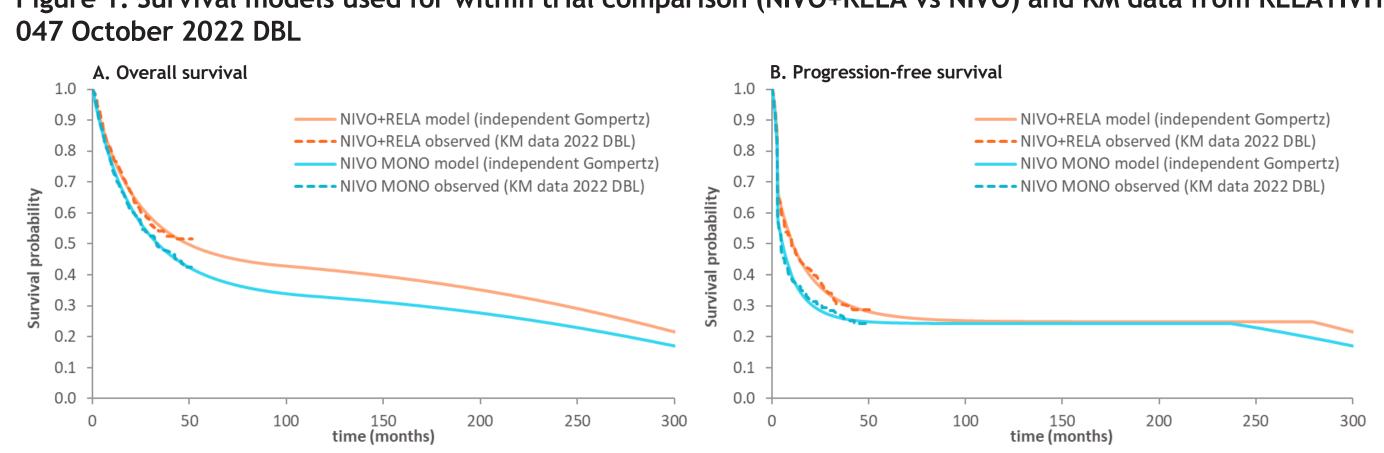
Table 1. Base-case curve selection and rationale

	Curve selection	Rationale
Within t	rial comparation (NIVO+RELA vs NIVO)	
OS	Gompertz	 A superior visual fit to the KM data and smoothe Estimated survival and hazards in line with long- A good statistical fit in terms of AIC/BIC
PFS	Piecewise model: KM (first 3 months) + Gompertz	 The best visual fit to both the KM data and obse The closest alignment to long term data from Ch A good statistical fit in terms of AIC/BIC
TTD	Weibull	 NIVO arm: the improved visual fit to the long-te NIVO+RELA arm: preferred to use the same TTD arms
Compar	ison external to RELATIVITY-047 (NIVO+RELA vs other	IOs and BRAF/MEK inhibitors)
OS	 Other IOs: FPNMA IO network BRAF/MEK inhibitors: FPNMA complete network (included patients from the BRAF/MEK inhibitors and IO trials irrespective of BRAF status) 	 Due to heterogeneity in study design and patient network To maximize sample size as the relative treatme on BRAF subgroup from the IO trials were consist based on the ITT population
PFS	 Other IOs: FPNMA IO network BRAF/MEK inhibitors: FPNMA complete network 	Same as above
TTD	 NIVO+IPI: CM067 IPI: CM067 PEMBRO: NIVO TTD as a proxy BRAF/MEK inhibitors: PFS as a proxy 	 CM067 data were very (96%) mature therefore not performed and PEMBRO TTD was not available and PEMBRO has as NIVO BRAF/MEK inhibitors TTD was not available. Unliproxy due to different mechanism of action and compared to IOs

Mate; FP, fractional polynomial; HR, hazard ratio; IO, Immuno-oncology; IPI, ipilimumab; ITC, indirect treatment comparison; KM, Kaplan-Meier; MEK, mitogen-activated extracellular signal-regulated kinase; NIVO, nivolumab; NMA, network meta-analysis; OS, overall survival; PEMBRO, pembrolizumab; PFS, progression-free survival; RELA, Relatlimab; TTD, Time to treatment discontinuation.

ed hazards g-term data from CheckMate-067

erved smoothed hazards CheckMate-067


erm CheckMate-067 TTD data D distributions for both treatment

nt characteristics in the complete

nent effects from the NMA based stent with those from the NMA

no extrapolation was required s the similar mechanism of action

like for IOs, PFS was used as a d different administration mode

DBL, data base lock; KM, Kaplan-Meier; NIVO, nivolumab; RELA, relatlimab. Note: the OS and PFS curves were adjusted with the background (general population) mortality

Cost inputs

• Costs were obtained from official Canadian sources and literature and were inflated to 2023 values where relevant. Drug acquisition costs were based on list prices.

- Cost categories included in the base-case analysis were:
- Disease management costs (PF/PD health state costs, one time progression related costs, and end-of-life care costs). • Drug acquisition and administration costs
- Costs associated with the management of adverse events (AEs)
- Subsequent treatment costs

• Maximum treatment duration of 2 years for all IO-drugs was selected for the base case Quality of life

- Utility analyses were conducted based on the EQ-5D-3L questionnaire collected from the RELATIVITY-047 trial and used Canadian-specific tariffs.[13]
- Overall health-state utilities were used (PF: 0.81; PD:0.79), given the absence of statistical difference in health-state values between the treatment groups (p=0.752).
- The model included grade 3-5 TRAEs. A one-off cost and utility decrement was applied in the first model cycle to account for the expected impact of these AEs on utility.

Probabilistic base case

• In line with CADTH guidelines, the model was built probabilistically.

• A probability distribution was defined for each probabilistic input (Table 2), and when the model was run, a value for each probabilistic input was randomly selected from the associated probability distribution. • Mean model results over the 4,000 iterations were reported.

Table 2. Distributions and sources of stochasticity

Type of parameter	Distribution	Source of stochasticity
Clinical data	Multivariate normal distribution	SE based on RELATIVITY-047 and FPNMA
Model state utility values and disutility	Beta	SE based on RELATIVITY-047
AE disutility	Beta	Proxy: SE equals 20% of mean
Average weight	Normal	SE based on RELATIVITY-047
Adverse event costs	Gamma	Combination of sourced SE from official Canadian websites and proxy SE
HCRU costs	Gamma	Proxy: SE equals 20% of mean
Mortality costs	Gamma	Proxy: SE equals 20% of mean
Base patient characteristic values	Log-normal or Beta	SE sourced from RELATIVITY-047
Frequencies of AEs	Beta	Proxy: SE equals 20% of mean

Results

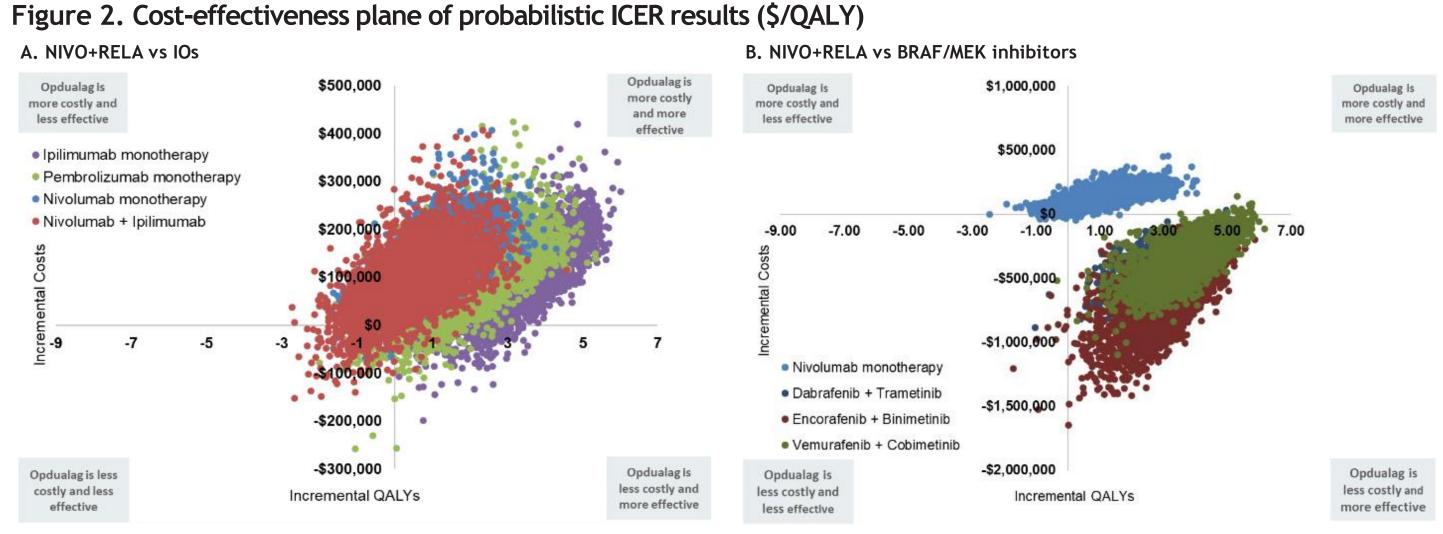
Cost-effectiveness probabilistic base case results

- NIVO+RELA generated higher QALYs compared to all IOs; total QALYs were 5.74, 4.93, 3.40, 6.38, and 6.89 for NIVO, PEMBRO, IPI, NIVO+IPI, and NIVO+RELA, respectively (Table 3).
- The total costs were \$235,576, \$268,007, \$268,964, \$274,002, and \$371,036 for NIVO, PEMBRO, IPI, NIVO+IPI, and NIVO+RELA, respectively (Table 3). The disaggregated costs by treatment are shown in Table 4.
- against BRAF/MEK inhibitors NIVO+RELA was less costly and more effective. • For IOs, NIVO+RELA resulted in an incremental cost-effectiveness ratio (ICER) of \$117,838/QALY vs NIVO; \$187,138/QALY vs
- NIVO+IPI; \$52,559/QALY vs PEMBRO and \$29,249/QALY vs IPI (Table 3) • For BRAF/MEK inhibitors, NIVO+RELA dominated all BRAF/MEK inhibitors, generating higher QALYs with cost savings (Table 3).

Table 3 Dairwise incremental results for cost-offectiveness frontier in 11 advanced unresectable melanema

Treatment	Total costs, \$	Total QALYs	Inc. cost / QALYG, \$	
Within trial comparison (RELAT	ΓΙVITY-047)			
NIVO+RELA	371,036	6.894	6.894 -	
NIVO	235,576	5.745	117,838	
FPNMA IO network				
NIVO+IPI	274,002	6.376	187,138	
PEMBRO	268,007	4.934	52,559	
IPI	268,964	3.405	29,249	
PNMA complete network				
VEM+COBI	712,242	3.146	Dominated	
DAB+TRAM	779,511	3.729	729 Dominated	
ENCO+BINI	1,090,092	4.028	Dominated	

TRAM, trametinib; VEM, vemurafenib.


Figure 1. Survival models used for within trial comparison (NIVO+RELA vs NIVO) and KM data from RELATIVITY-

• In the pairwise comparison, NIVO+RELA was more costly and more effective than IO comparators. With comparison

Treatment	Total cost, \$	Cost breakdown, \$				
		Disease management	Treatment acquisition	Treatment admin	AEs	Subsequent treatment
NIVO+RELA	371,036	158,638	199,578	657	475	11,689
NIVO	235,576	116,739	104,694	2,285	173	11,685
NIVO+IPI	274,002	94,780	166,535	2,063	4,639	5,985
PEMBRO	268,007	115,524	137,488	1,974	752	12,269
IPI	268,964	147,148	109,012	192	2,283	10,328

TRAM, trametinib; VEM, vemurafenik

- The CE planes for ICERs (cost per QALY gained) are displayed in Figure 2. (NE) quadrant (Figure 2A).
- southeast (SE) quadrant (Figure 2B).

Discussion

- ICERs of NIVO+RELA vs IOs fell in NE quadrant.
- such, the ICER presented for NIVO+RELA vs NIVO+IPI should be interpreted with caution.
- the robustness of the results was confirmed.

Conclusion

References

[1] Canadian Cancer Society. Canadian Cancer Statistics 2021. Accessed 26 January, 2023. cancer.ca/Canadian-Cancer-Statistics-2021-EN [2] Brenner DR, Poirier A, Woods RR, et al. Projected estimates of cancer in Canada in 2022. CMAJ. May 2 2022;194(17):E601-E607. doi:10.1503/cmaj.212097 [3] Khair, D.O., et al., Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Front Immunol, 2019. 10: p. 453. [4] Hemon P, Jean-Louis F, Ramgolam K, et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol 2011:186:5173-83 [5] Woo S-R, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 2012;72:917-27 [6] Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N Engl J Med. 2022;386(1):24-34. doi:10.1056/NEJMoa2109970 [7] Georgina V. Long et al., Relatlimab and nivolumab versus nivolumab in previously untreated metastatic or unresectable melanoma: Overall survival and response rates from RELATIVITY-047 (CA224-047). JCO 40, 360385-360385(2022). DOI:10.1200/JCO.2022.40.36_suppl.360385 [8] Regulatory Decision Summary for Opdualag - Drug and Health Products Portal (hpfb-dgpsa.ca). https://dhpp.hpfb-dgpsa.ca/reviewdocuments/resource/RDS1695648310158 CADTH. [9] CADTH Reimbursement Relatlimab (Opdualag). Recommendation Nivolumab https://www.cadth.ca/sites/default/files/DRR/2024/PC0329REC-Opdaulag.pdf [10] CADTH. Guidelines for the Economic Evaluation of Health Technologies: Canada. CADTH. Accessed 2023,

https://www.cadth.ca/sites/default/files/Drug_Review_Process/CADTH_Drug_Reimbursement_Review_Procedures.pdf [11] Bristol-Myers Squibb. Clinical Study Report CA224047. Data on file 2023 [12] Latimer, N. NICE DSU technical support document 14: undertaking survival analysis for economic evaluations alongside clinical trials extrapolation with patient-level data. 2011. [13] Bristol Myers Squibb. Utility analysis report. Data on file. 2023.

Acknowledgments

- Bristol Myers Squibb (Princeton, NJ, USA)
- This study was supported by Bristol Myers Squibb
- All authors contributed to and approved the presentation.

• NIVO+RELA was more effective and more costly compared to other IOs: most (70%-94%) of probabilistic ICERs fell in the northeast

NIVO+RELA was always the most cost-effective treatment against BRAF/MEK inhibitors: over 99% of probabilistic ICERs fell in

• For comparison with IOs, NIVO+RELA was the most effective and costly treatment. Between 70%-94% of probabilistic

• For comparison with BRAF/MEK inhibitors, NIVO+RELA dominated all BRAF/MEK inhibitors, generating higher QALYs with cost savings. Over 99% of probabilistic ICERs of NIVO+RELA vs BRAF/MEK inhibitors fell in SE quadrant.

• Due to similar efficacy between NIVO+RELA and NIVO+IPI, a small incremental QALY difference was observed, and as

• Although the relative treatment effects from the NMA used the ITT population, a sensitivity analysis showed results based on BRAF subgroup from the IO trials were consistent with those from the NMA based on the ITT population. Thus,

• This study provides robust modeling evidence that suggests NIVO+RELA is expected to be a life-extending and costeffective new therapy compared to SOC treatments for unresectable or metastatic melanoma in Canada.